Investigating the performance of multi-objective reinforcement learning techniques in the context of IoT with harvesting energy

被引:0
|
作者
Haouari, Bakhta [1 ,2 ,3 ]
Mzid, Rania [1 ,4 ]
Mosbahi, Olfa [2 ]
机构
[1] Univ Tunis El Manar, ISI, 2 Rue Abourraihan Al Bayrouni, Ariana 2080, Tunisia
[2] Univ Carthage, LISI Lab INSAT, Ctr Urbain Nord BP 676, Tunis 1080, Tunisia
[3] Univ Carthage, Tunisia Polytech Sch, BP 743, La Marsa 2078, Tunisia
[4] Univ Sfax, CES Lab ENIS, BP w3, Sfax 3038, Tunisia
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 04期
关键词
IoT; Energy harvesting; Multi-objective optimization; Reinforcement learning; Scalarization; Pareto Q-learning;
D O I
10.1007/s11227-025-07010-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the realm of IoT, wireless sensor networks (WSNs) play a crucial role in efficient data collection and task execution. However, energy constraints, particularly in battery-powered WSNs, present significant challenges. Energy harvesting (EH) technologies extend battery life but introduce variability that can impact quality of service (QoS). This paper introduces QoSA, a reinforcement learning (RL) agent designed to optimize QoS while adhering to energy constraints in IoT gateways. QoSA employs both single-policy and multi-policy RL methods to address trade-offs between conflicting objectives. This study investigates the performance of these methods in identifying Pareto front solutions for optimal service activation. A comparative analysis highlights the strengths and weaknesses of each proposed algorithm. Experimental results show that multi-policy methods outperform their single-policy counterparts in balancing trade-offs, demonstrating their effectiveness in real-world IoT applications.
引用
收藏
页数:49
相关论文
共 50 条
  • [41] Hypervolume-Based Multi-Objective Reinforcement Learning
    Van Moffaert, Kristof
    Drugan, Madalina M.
    Nowe, Ann
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 352 - 366
  • [42] A practical guide to multi-objective reinforcement learning and planning
    Conor F. Hayes
    Roxana Rădulescu
    Eugenio Bargiacchi
    Johan Källström
    Matthew Macfarlane
    Mathieu Reymond
    Timothy Verstraeten
    Luisa M. Zintgraf
    Richard Dazeley
    Fredrik Heintz
    Enda Howley
    Athirai A. Irissappane
    Patrick Mannion
    Ann Nowé
    Gabriel Ramos
    Marcello Restelli
    Peter Vamplew
    Diederik M. Roijers
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [43] Incremental reinforcement learning for multi-objective robotic tasks
    Garcia, Javier
    Iglesias, Roberto
    Rodriguez, Miguel A.
    Regueiro, Carlos V.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 51 (03) : 911 - 940
  • [44] Incremental reinforcement learning for multi-objective robotic tasks
    Javier García
    Roberto Iglesias
    Miguel A. Rodríguez
    Carlos V. Regueiro
    Knowledge and Information Systems, 2017, 51 : 911 - 940
  • [45] Adaptive Objective Selection for Correlated Objectives in Multi-Objective Reinforcement Learning
    Brys, Tim
    Van Moffaert, Kristof
    Nowe, Ann
    Taylor, Matthew E.
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 1349 - 1350
  • [46] Dynamic Resource Configuration for Low-Power IoT Networks: A Multi-Objective Reinforcement Learning Method
    Huang, Yang
    Hao, Caiyong
    Mao, Yijie
    Zhou, Fuhui
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2285 - 2289
  • [47] Towards Energy-Efficient Autonomous Driving: A Multi-Objective Reinforcement Learning Approach
    He, Xiangkun
    Lv, Chen
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (05) : 1329 - 1331
  • [48] Towards Energy-Efficient Autonomous Driving: A Multi-Objective Reinforcement Learning Approach
    Xiangkun He
    Chen Lv
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (05) : 1329 - 1331
  • [49] A Multi-Objective Approach for Optimal Energy Management in Smart Home Using the Reinforcement Learning
    Diyan, Muhammad
    Silva, Bhagya Nathali
    Han, Kijun
    SENSORS, 2020, 20 (12) : 1 - 20
  • [50] Prediction Guided Meta-Learning for Multi-Objective Reinforcement Learning
    Liu, Fei-Yu
    Qian, Chao
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 2171 - 2178