Covering a Graph with Densest Subgraphs

被引:0
|
作者
Riccardo Dondi [1 ]
Alexandru Popa [2 ]
机构
[1] Università degli Studi di Bergamo,Dipartimento di Lettere, Filosofia, Comunicazione
[2] University of Bucharest,Department of Computer Science
来源
La Matematica | 2024年 / 3卷 / 4期
关键词
Dense subgraphs; Graph algorithms; Approximation algorithms; Graph mining;
D O I
10.1007/s44007-024-00139-5
中图分类号
学科分类号
摘要
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.
引用
收藏
页码:1360 / 1378
页数:18
相关论文
共 50 条
  • [41] Partitioning a Graph into Complementary Subgraphs
    Nascimento, Julliano R.
    Souza, Ueverton S.
    Szwarcfiter, Jayme L.
    GRAPHS AND COMBINATORICS, 2021, 37 (04) : 1311 - 1331
  • [42] Top-k overlapping densest subgraphs: approximation algorithms and computational complexity
    Dondi, Riccardo
    Hosseinzadeh, Mohammad Mehdi
    Mauri, Giancarlo
    Zoppis, Italo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 80 - 104
  • [43] Decomposing a graph into expanding subgraphs
    Moshkovitz, Guy
    Shapira, Asaf
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (01) : 158 - 178
  • [44] ON INDEPENDENT COMPLETE SUBGRAPHS IN A GRAPH
    MOON, JW
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01): : 95 - &
  • [45] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szieder, Stefan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2045 - 2053
  • [46] A DECOMPOSITION OF A GRAPH INTO DENSE SUBGRAPHS
    TOIDA, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (06): : 583 - 589
  • [47] ON THE NUMBER OF HOMOGENEOUS SUBGRAPHS OF A GRAPH
    SZEKELY, LA
    COMBINATORICA, 1984, 4 (04) : 363 - 372
  • [48] Regular subgraphs of a regular graph
    Kano, Mikio
    Annals of the New York Academy of Sciences, 1989, 576
  • [49] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szeider, Stefan
    FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 340 - +
  • [50] Top-k overlapping densest subgraphs: approximation algorithms and computational complexity
    Riccardo Dondi
    Mohammad Mehdi Hosseinzadeh
    Giancarlo Mauri
    Italo Zoppis
    Journal of Combinatorial Optimization, 2021, 41 : 80 - 104