Hybrid Android Malware Detection and Classification Using Deep Neural Networks

被引:0
|
作者
Rashid, Muhammad Umar [1 ]
Qureshi, Shahnawaz [2 ]
Abid, Abdullah [1 ]
Alqahtany, Saad Said [3 ]
Alqazzaz, Ali [4 ]
Hassan, Mahmood ul [5 ]
Reshan, Mana Saleh Al [6 ,7 ]
Shaikh, Asadullah [6 ,7 ]
机构
[1] Natl Univ Comp & Emerging Sci, H 11, Islamabad 44000, Pakistan
[2] Pak Austria Fachhochschule Inst Appl Sci & Technol, Sino Pak Ctr Artificial Intelligence, Sch Comp, Haripur 22650, Pakistan
[3] Islamic Univ Madinah, Fac Comp & Informat Syst, Madinah 42351, Saudi Arabia
[4] Univ Bisha, Coll Comp & Informat Technol, Bisha 61922, Saudi Arabia
[5] Najran Univ, Dept Comp Skills, Deanship Preparatory Year, Najran 61441, Saudi Arabia
[6] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran 61441, Saudi Arabia
[7] Najran Univ, Coll Comp Sci & Informat Syst, Emerging Technol Res Lab ETRL, Najran 61441, Saudi Arabia
关键词
Malware; Android malware; Artificial neural networks; Machine learning; FRAMEWORK;
D O I
10.1007/s44196-025-00783-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a deep learning-based framework for Android malware detection that addresses critical limitations in existing methods, particularly in handling obfuscation and scalability under rapid mobile app development cycles. Unlike prior approaches, the proposed system integrates a multi-dimensional analysis of Android permissions, intents, and API calls, enabling robust feature extraction even under reverse engineering constraints. Experimental results demonstrate state-of-the-art performance, achieving 98.2% accuracy (a 7.5% improvement over DeepAMD) on a cross-dataset evaluation spanning 15 malware families and 45,000 apps. The framework's novel architecture enhances explainability by mapping detection outcomes to specific behavioral patterns while rigorous benchmarking across five public datasets (including Drebin, AndroZoo, and VirusShare) mitigates dataset bias and validates generalization. By outperforming existing techniques in accuracy, adaptability, and interpretability, this work advances the practicality of deep learning for real-world Android malware defense in evolving threat landscapes.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] RGB-based Android Malware Detection and Classification Using Convolutional Neural Network
    Darwaish, Asim
    Nait-Abdesselam, Farid
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [32] DeepRefiner: Multi-layer Android Malware Detection System Applying Deep Neural Networks
    Xu, Ke
    Li, Yingjiu
    Deng, Robert H.
    Chen, Kai
    2018 3RD IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P 2018), 2018, : 473 - 487
  • [33] Android Malware Detection Using Deep Learning Methods
    Lukas, Robert
    Kolaczek, Grzegorz
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 119 - 124
  • [34] Hybrid Detection Using Permission Analysis for Android Malware
    Jiao, Haofeng
    Li, Xiaohong
    Zhang, Lei
    Xu, Guangquan
    Feng, Zhiyong
    INTERNATIONAL CONFERENCE ON SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2014, PT I, 2015, 152 : 541 - 545
  • [35] Android Malware Detection Using Long Short Term Memory Recurrent Neural Networks
    Georgieva, Lilia
    Lamarque, Basile
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 42 - 52
  • [36] Android malware classification using convolutional neural network and LSTM
    Soodeh Hosseini
    Ali Emamali Nezhad
    Hossein Seilani
    Journal of Computer Virology and Hacking Techniques, 2021, 17 : 307 - 318
  • [37] Android malware classification using convolutional neural network and LSTM
    Hosseini, Soodeh
    Nezhad, Ali Emamali
    Seilani, Hossein
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) : 307 - 318
  • [38] Metaheuristics with Deep Learning Model for Cybersecurity and Android Malware Detection and Classification
    Albakri, Ashwag
    Alhayan, Fatimah
    Alturki, Nazik
    Ahamed, Saahirabanu
    Shamsudheen, Shermin
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [39] A framework for Android Malware detection and classification
    Murtaz, Muhammad
    Azwar, Hassan
    Ali, Syed Baqir
    Rehman, Saad
    2018 5TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING TECHNOLOGIES AND APPLIED SCIENCES (IEEE ICETAS), 2018,
  • [40] An Enhanced Deep Learning Neural Network for the Detection and Identification of Android Malware
    Musikawan, Pakarat
    Kongsorot, Yanika
    You, Ilsun
    So-In, Chakchai
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8560 - 8577