On regular fusible modulesOn regular fusible modulesO. A. Naji et al.

被引:0
|
作者
Osama A. Naji [1 ]
Mehmet Özen [1 ]
Ünsal Tekir [2 ]
Suat Koç [3 ]
机构
[1] Sakarya University,Department of Mathematics
[2] Marmara University,Department of Mathematics
[3] Istanbul Medeniyet University,Department of Mathematics
关键词
Regular fusible module; Fusible module; Fusible ring; Regular fusible ring; Regular fusible submodule; 16D10; 16D80; 16U99;
D O I
10.1007/s13398-024-01679-9
中图分类号
学科分类号
摘要
In this article, we introduce the notion of regular fusible modules. Let R be a ring with an identity and M an R-module. An element 0≠m∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne m\in M$$\end{document} is said to be regular fusible if there exist r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in R$$\end{document}, a non zero-divisor of M, such that mr can be written as the sum of a torsion element and a torsion free element in M. M is called regular fusible if every nonzero element of M is regular fusible. We characterize regular fusible modules in terms of fusible modules. In addition, we show that a regular fusible module over a right duo ring is reduced and nonsingular. Moreover, we study the regular fusible property under Cartesian product, trivial extension ring, and module of fractions. Also, we characterize division rings in terms of fusible modules.
引用
收藏
相关论文
共 50 条