On regular fusible modulesOn regular fusible modulesO. A. Naji et al.

被引:0
|
作者
Osama A. Naji [1 ]
Mehmet Özen [1 ]
Ünsal Tekir [2 ]
Suat Koç [3 ]
机构
[1] Sakarya University,Department of Mathematics
[2] Marmara University,Department of Mathematics
[3] Istanbul Medeniyet University,Department of Mathematics
关键词
Regular fusible module; Fusible module; Fusible ring; Regular fusible ring; Regular fusible submodule; 16D10; 16D80; 16U99;
D O I
10.1007/s13398-024-01679-9
中图分类号
学科分类号
摘要
In this article, we introduce the notion of regular fusible modules. Let R be a ring with an identity and M an R-module. An element 0≠m∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne m\in M$$\end{document} is said to be regular fusible if there exist r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in R$$\end{document}, a non zero-divisor of M, such that mr can be written as the sum of a torsion element and a torsion free element in M. M is called regular fusible if every nonzero element of M is regular fusible. We characterize regular fusible modules in terms of fusible modules. In addition, we show that a regular fusible module over a right duo ring is reduced and nonsingular. Moreover, we study the regular fusible property under Cartesian product, trivial extension ring, and module of fractions. Also, we characterize division rings in terms of fusible modules.
引用
收藏
相关论文
共 50 条
  • [1] On regular fusible modules
    Naji, Osama A.
    Ozen, Mehmet
    Tekir, Unsal
    Koc, Suat
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [2] Saddle Points in Completely Regular Topological SpacesSaddle Points in Completely Regular Topological SpacesD. Kamburova et al.
    Detelina Kamburova
    Rumen Marinov
    Nadia Zlateva
    Vietnam Journal of Mathematics, 2025, 53 (2) : 441 - 451
  • [3] A. Kamath et al. reply
    Ambika Kamath
    Caitlin E. McDonough
    Julia D. Monk
    Max R. Lambert
    Erin Giglio
    Nature Ecology & Evolution, 2020, 4 (6) : 786 - 787
  • [4] Response to A. Matikas et al.
    Schrijver, Willemijne A. M. E.
    Suijkerbuijk, Karijn P. M.
    van der Wall, Elsken
    Moelans, Cathy B.
    van Diest, Paul J.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2018, 110 (11):
  • [5] Reply to the Comment by A. Pluchino et al.
    Figueiredo, A.
    Rocha Filho, T. M.
    Amato, M. A.
    EPL, 2009, 85 (06)
  • [6] Commentary on the article by A. Kamoun et al.
    Russell W. Chesney
    Michel Broyer
    Pediatric Nephrology, 1999, 13 (9) : 926 - 926
  • [7] Reply to the comment by A.!Dominguez et al.
    Wuerger, Alois
    EPL, 2007, 77 (06)
  • [8] Mesorectum, is it an appropriate term? by A. Tufano et al.
    F. Stelzner
    International Journal of Colorectal Disease, 2007, 22 : 1129 - 1130
  • [9] A. J. Eisfeld et al. reply
    Amie J. Eisfeld
    Asim Biswas
    Lizheng Guan
    Chunyang Gu
    Tadashi Maemura
    Sanja Trifkovic
    Tong Wang
    Lavanya Babujee
    Randall Dahn
    Peter J. Halfmann
    Tera Barnhardt
    Gabriele Neumann
    Yasuo Suzuki
    Alexis Thompson
    Amy K. Swinford
    Kiril M. Dimitrov
    Keith Poulsen
    Yoshihiro Kawaoka
    Nature, 2025, 640 (8059) : E28 - E29