Flexible devices are increasingly crucial in various aspects of our lives, including healthcare devices and human-machine interface systems, revolutionizing human life. As technology evolves rapidly, there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality. Recently, digital light processing (DLP) 3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures, high fabrication speed, low-cost technology and widespread adoption. This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing, with a focus on soft actuators, flexible sensors and flexible energy devices. We emphasize how DLP printing and the development of DLP printable materials enhance the structural design, sensitivity, mechanical performance, and overall functionality of these devices. Finally, we discuss the challenges and perspectives associated with DLP-printed flexible devices. We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices, shortening the design-to-manufacturing cycles.