Logarithmic singularities of Renyi entropy as a sign of chaos?

被引:0
|
作者
Iizuka, Norihiro [1 ,2 ,3 ]
Nishida, Mitsuhiro [4 ]
机构
[1] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan
[2] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[4] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, South Korea
来源
基金
新加坡国家研究基金会;
关键词
AdS-CFT Correspondence; Gauge-Gravity Correspondence; Scale and Conformal Symmetries;
D O I
10.1007/JHEP10(2024)043
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose that the logarithmic singularities of the Renyi entropy of local-operator-excited states for replica index n can be a sign of quantum chaos. As concrete examples, we analyze the logarithmic singularities of the Renyi entropy in various two-dimensional conformal field theories. We show that there are always logarithmic singularities of the Renyi entropy in holographic CFTs, but no such singularities in free and rational CFTs. These singularities of the Renyi entropy are also related to the logarithmic time growth of the Renyi entropy at late times.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Shannon and Renyi Entropy of Wavelets
    de Oliveira, H. M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2015, 10 (01): : 13 - 26
  • [32] Convexity and robustness of the Renyi entropy
    Buryak, Filipp
    Mishura, Yuliya
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2021, 8 (03): : 387 - 412
  • [33] Renyi entropy of chaotic eigenstates
    Lu, Tsung-Cheng
    Grover, Tarun
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [34] Entropic cosmology for Renyi entropy
    Naeem, Muhammad
    Ahmed, Jamil
    Bibi, Aysha
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [35] Maximum Renyi Entropy Rate
    Bunte, Christoph
    Lapidoth, Amos
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1193 - 1205
  • [36] Holographic Renyi entropy and generalized entropy method
    Guo, Wu-zhong
    Li, Miao
    NUCLEAR PHYSICS B, 2014, 882 : 128 - 144
  • [37] Renyi entropy as a statistical entropy for complex systems
    Bashkirov, A. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 149 (02) : 1559 - 1573
  • [38] Simplifying integration for logarithmic singularities
    Smith, RNL
    BOUNDARY ELEMENTS XVIII, 1996, : 233 - 240
  • [39] Heights and metrics with logarithmic singularities
    Freixas i Montplet, Gerard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 627 : 97 - 153
  • [40] SCALING THEORY AND LOGARITHMIC SINGULARITIES
    NIGHTINGALE, MP
    HOOFT, AH
    PHYSICA, 1974, 77 (02): : 390 - 402