Renormalized Solutions for the Non-local Equations in Fractional Musielak-Sobolev Spaces

被引:0
|
作者
Li, Ying [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Renormalized solutions; Existence; Uniqueness; L-1-data; Fractional Musielak-Sobolev spaces; PARABOLIC EQUATIONS; ELLIPTIC PROBLEMS; ORLICZ SPACES; EXISTENCE;
D O I
10.1007/s12220-024-01835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the non-local equations with non-negative L-1-data in the fractional Musielak-Sobolev spaces. Utilizing approximation and energy methods, we establish the existence and uniqueness of non-negative renormalized solutions for such problems. The operators discussed in this work include the fractional Orlicz operators with variable exponents, the fractional double-phase operators with variable exponents, and the anisotropic fractional p-Laplacian operators, among others.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] L∞-regularity result for an obstacle problem with degenerate coercivity in Musielak-Sobolev spaces
    Bourahma, Mohamed
    Bennouna, Jaouad
    El Moumni, Mostafa
    Benkirane, Abdelmoujib
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1617 - 1641
  • [22] Two weak solutions for perturbed non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    APPLICABLE ANALYSIS, 2015, 94 (05) : 891 - 902
  • [23] MULTIPLE SOLUTIONS FOR PERTURBED NON-LOCAL FRACTIONAL LAPLACIAN EQUATIONS
    Ferrara, Massimiliano
    Guerrini, Luca
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [24] Multiplicity of solutions for a class of superlinear non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (05) : 583 - 595
  • [25] GROUND STATE SOLUTIONS FOR NON-LOCAL FRACTIONAL SCHRODINGER EQUATIONS
    Pu, Yang
    Liu, Jiu
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [26] Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
    Dong, Ge
    Fang, Xiaochun
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [27] Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces
    Li, Ying
    Yao, Fengping
    Zhou, Shulin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [28] Sobolev estimates for fractional parabolic equations with space-time non-local operators
    Hongjie Dong
    Yanze Liu
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [29] On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems
    J. C. de Albuquerque
    L. R. S. de Assis
    M. L. M. Carvalho
    A. Salort
    The Journal of Geometric Analysis, 2023, 33
  • [30] Sobolev estimates for fractional parabolic equations with space-time non-local operators
    Dong, Hongjie
    Liu, Yanze
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)