Transcendental Brauer-Manin obstructions on singular K3 surfaces

被引:0
|
作者
Tawfik, Mohamed Alaa [1 ]
Newton, Rachel [1 ]
机构
[1] Kings Coll London, Dept Math, Strand, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Primary: 14G05; Secondary: 14F22; 11G05; 14J28;
D O I
10.1007/s40993-024-00580-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E and E '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} be elliptic curves over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document} with complex multiplication by the ring of integers of an imaginary quadratic field K and let Y=Kum(ExE ')\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y={{\,\textrm{Kum}\,}}(E\times E')$$\end{document} be the minimal desingularisation of the quotient of ExE '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\times E'$$\end{document} by the action of -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. We study the Brauer groups of such surfaces Y and use them to furnish new examples of transcendental Brauer-Manin obstructions to weak approximation.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Odd order Brauer-Manin obstruction on diagonal quartic surfaces
    Ieronymou, Evis
    Skorobogatov, Alexei N.
    ADVANCES IN MATHEMATICS, 2015, 270 : 181 - 205
  • [32] Insufficiency of the Brauer-Manin Obstruction for Rational Points on Enriques Surfaces
    Balestrieri, Francesca
    Berg, Jennifer
    Manes, Michelle
    Park, Jennifer
    Viray, Bianca
    DIRECTIONS IN NUMBER THEORY, 2016, 3 : 1 - 31
  • [33] EXPLICIT UNIFORM BOUNDS FOR BRAUER GROUPS OF SINGULAR K3 SURFACES
    Balestrieri, Francesca
    Johnson, Alexis
    Newton, Rachel
    ANNALES DE L INSTITUT FOURIER, 2023, 73 (02) : 567 - 607
  • [34] On the Brauer-Manin obstruction for degree-four del Pezzo surfaces
    Jahnel, Joerg
    Schindler, Damaris
    ACTA ARITHMETICA, 2016, 176 (04) : 301 - 319
  • [35] Brauer-Manin obstruction for integral points on Markoff-type cubic surfaces
    Dao, Quang-Duc
    JOURNAL OF NUMBER THEORY, 2024, 254 : 65 - 102
  • [36] The Brauer group of analytic K3 surfaces
    Huybrechts, D
    Schröer, S
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (50) : 2687 - 2698
  • [37] Brauer-Manin obstruction and families of generalised Chatelet surfaces over number fields
    Balestrieri, Francesca
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (02) : 289 - 308
  • [38] Complex multiplication and Brauer groups of K3 surfaces
    Valloni, Domenico
    ADVANCES IN MATHEMATICS, 2021, 385
  • [39] Some remarks on Brauer groups of K3 surfaces
    van Geemen, B
    ADVANCES IN MATHEMATICS, 2005, 197 (01) : 222 - 247
  • [40] A transcendental Brauer-Manin obstruction to weak approximation on a Calabi-Yau threefold (vol 8, 12, 2022)
    Hashimoto, Sachi
    Honigs, Katrina
    Lamarche, Alicia
    Vogt, Isabel
    RESEARCH IN NUMBER THEORY, 2022, 8 (02)