Comparison of automated machine learning (AutoML) libraries in time series forecasting

被引:0
|
作者
Akkurt, Nagihan [1 ]
Hasgui, Servet [1 ]
机构
[1] Eskisehir Osmangazi Univ, Fac Engn & Architecture, Dept Ind Engn, TR-26480 Eskisehir, Turkiye
关键词
AutoML; AutoML libraries; time series forecasting;
D O I
10.17341/gazimmfd.1286720
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Companies must make forecasts for the future to take necessary precautions, as well as to guard or expand their position and remain competitive. The development of data technologies has made it easier to reach meaningful data. Analyzing these data with methods such as artificial intelligence, machine learning, and deep learning makes it possible to obtain highly accurate results in future forecasts. However, the presence of numerous methods in the literature poses several challenges for researchers, including selecting the most suitable method and determining the appropriate techniques for model and hyper-parameter selection. Moreover, comparing different values in the model and making hyper-parameter selections can be tedious and time-consuming. Therefore, this study aims to use the AutoML method, which is an advanced version of machine learning. AutoML automates machine learning models, allowing the use and development of machine learning algorithms without requiring expertise in this field. The study carried out forecasts using 6 different AutoML libraries on univariate time series datasets, and forecasting successes were compared over various performance metrics. According to the results obtained on the data set used, it was observed that the Auto_ARIMA library had the highest forecasting success rate among the selected libraries.
引用
收藏
页码:1693 / 1701
页数:10
相关论文
共 50 条
  • [11] Forecasting inflation in Turkey: A comparison of time-series and machine learning models
    Akbulut, Hale
    ECONOMIC JOURNAL OF EMERGING MARKETS, 2022, 14 (01) : 55 - 71
  • [12] Efficient Automated Deep Learning for Time Series Forecasting
    Deng, Difan
    Karl, Florian
    Hutter, Frank
    Bischl, Bernd
    Lindauer, Marius
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 664 - 680
  • [13] Automated Machine Learning for Time Series Prediction
    da Silva, Felipe Rooke
    Vieira, Alex Borges
    Bernardino, Heder Soares
    Alencar, Victor Aquiles
    Pessamilio, Lucas Ribeiro
    Correa Barbosa, Helio Jose
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [14] Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series
    Sarafanov, Mikhail
    Pokrovskii, Valerii
    Nikitin, Nikolay O.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [15] Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database
    Olsavszky, Victor
    Dosius, Mihnea
    Vladescu, Cristian
    Benecke, Johannes
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (14) : 1 - 17
  • [16] AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting
    Shchur, Oleksandr
    Turkmen, Caner
    Erickson, Nick
    Shen, Huibin
    Shirkov, Alexander
    Hu, Tony
    Wang, Yuyang
    INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, VOL 224, 2023, 224
  • [17] A machine learning approach for forecasting hierarchical time series
    Mancuso, Paolo
    Piccialli, Veronica
    Sudoso, Antonio M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [18] Applied Machine Learning Methods for Time Series Forecasting
    Pang, Linsey
    Liu, Wei
    Wu, Lingfei
    Xie, Kexin
    Guo, Stephen
    Chalapathy, Raghav
    Wen, Musen
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5175 - 5176
  • [19] Electric vehicle load forecasting: a comparison between time series and machine learning approaches
    Buzna, Lubos
    De Falco, Pasquale
    Khormali, Shahab
    Proto, Daniela
    Straka, Milan
    2019 1ST INTERNATIONAL CONFERENCE ON ENERGY TRANSITION IN THE MEDITERRANEAN AREA (SYNERGY MED 2019), 2019,
  • [20] A Comparison of Statistical and Machine Learning Approaches for Time Series Forecasting in a Demand Management Scenario
    Pfeifer, Anton
    Brand, Hendrik
    Lohweg, Volker
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,