Enhancing the performance of proton-exchange membrane fuel cell by optimizing the hydrophobicity and porosity of cathode catalyst layer

被引:0
|
作者
Zhang, Yan [1 ]
Jia, Puping [1 ]
Yang, Suyi [1 ]
Su, Jinzhan [1 ]
Guo, Liejin [1 ]
机构
[1] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
proton-exchange membrane fuel cell; cathode catalyst layer; membrane electrode assemblies; polytetrafluoroethylene; pore-forming agent; PORE-FORMER; OPTIMIZATION; MANAGEMENT; IONOMER; ENERGY;
D O I
10.1007/s11431-024-2856-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Appropriate hydrophobicity and porosity of the proton-exchange membrane fuel cell (PEMFC) cathode catalyst layer (CCL) are essential for efficient charge and mass transport. In this study, the effects of the CCL hydrophobicity and porosity on PEMFC performance were comprehensively investigated. Compared to a normal CCL, a cathode hydrophobic dual-layer catalyst structure (with a 2:1 Pt loading ratio between the inner and outer layers and 9.3% polytetrafluoroethylene (PTFE) in the outer layer) exhibited a 29.8% increase in power density. Among the tested pore-forming agents, ammonium bicarbonate (NH4HCO3) was the most suitable because of its low pyrolysis temperature. The maximum power density of the CCL with a porous structure (prepared with a Pt/C:NH4HCO3 mass ratio of 1:3) was 38.3% higher than that of the normal CCL. By simultaneously optimizing the pore structure and hydrophobicity of the CCL, the maximum power density of the cathode hydrophobic dual-layer CCL (DCL) with pores showed a 44.7% increase compared to that of the normal CCL. This study demonstrates for the first time that simultaneously optimizing cathode porosity and hydrophobicity can enhance PEMFC performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Unveiling the impact of pore structure of cathode catalyst layer on proton exchange membrane cell performance
    Ni, Zhaojing
    Wang, Lu
    Wang, Bo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 1404 - 1413
  • [42] Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell
    Billy, E.
    Maillard, F.
    Morin, A.
    Guetaz, L.
    Emieux, F.
    Thurier, C.
    Doppelt, P.
    Donet, S.
    Mailley, S.
    JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2737 - 2746
  • [43] Coupled Dynamics of Anode and Cathode in Proton-Exchange Membrane Fuel Cells
    Nogueira, Jessica A.
    Krischer, Katharina
    Varela, Hamilton
    CHEMPHYSCHEM, 2019, 20 (22) : 3081 - 3088
  • [44] Cold start optimization of the proton-exchange membrane fuel cell by penetrating holes in the cathode micro-diffusion layer
    Wang, Peng
    Li, Linjun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (86) : 36650 - 36658
  • [45] Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review
    Deng, Xiang
    Zhang, Jun
    Fan, Ziyi
    Tan, Wenyi
    Yang, Guangming
    Wang, Wei
    Zhou, Wei
    Shao, Zongping
    ENERGY & FUELS, 2020, 34 (08) : 9175 - 9188
  • [46] Micromodification of the Catalyst Layer by CO to Increase Pt Utilization for Proton-Exchange Membrane Fuel Cells
    Wen, Zengyin
    Wu, Duojie
    Banham, Dustin
    Chen, Ming
    Sun, Fengman
    Zhao, Zhiliang
    Jin, Yiqi
    Fan, Li
    Xu, Shaoyi
    Gu, Meng
    Fan, Jiantao
    Li, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) : 903 - 913
  • [47] ANALYSIS OF PROTON-EXCHANGE MEMBRANE FUEL-CELL PERFORMANCE WITH ALTERNATE MEMBRANES
    WAKIZOE, M
    VELEV, OA
    SRINIVASAN, S
    ELECTROCHIMICA ACTA, 1995, 40 (03) : 335 - 344
  • [48] Performance Investigation of Proton-Exchange Membrane Fuel Cell with Dean Flow Channels
    Wei, Lin
    Liao, Zihao
    Dafalla, Ahmed Mohmed
    Jiang, Fangming
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [49] Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells
    Hussain, M. M.
    Song, D.
    Liu, Z. -S.
    Xie, Z.
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4533 - 4544
  • [50] Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells
    Du, CY
    Cheng, XQ
    Yang, T
    Yin, GP
    Shi, PF
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) : 1411 - 1416