Pristine and Ni-doped In2O3 pyramids response to NO2 gas: a transition state theory study

被引:0
|
作者
Mudar Ahmed Abdulsattar [1 ]
机构
[1] Ministry of Science and Technology,
关键词
Ni-doping; In; O; cluster; NO; gas sensor; Density functional theory; Transition state;
D O I
10.1007/s10751-025-02282-z
中图分类号
学科分类号
摘要
The reaction of pristine and Ni-doped In2O3 surface pyramid clusters with NO2 gas is discussed and compared with experimental findings. Ni doping effects on In2O3 with molar percentages of 1, 2, and 3% are calculated and compared with the experiment. The decomposition of NO2 gas at temperatures near 200 ̊C is considered. Gibbs free energy of transition is calculated in the range of 25 to 250 ̊C for the different doping percentages using the modified Evans–Polanyi principle. The transition state theory formalism is used to evaluate the reaction rate of NO2 with Ni-doped In2O3 surface. The present method is the only one that theoretically calculates response and response time as a function of temperature. Results include the response and response time of pristine and Ni-doped In2O3 to NO2 as a temperature and NO2 concentration function. The highest response and shortest response time were obtained at 2% Ni doping, which agrees with the experiment. The 2% Ni-doped In2O3 sensor has a high response (70) and short response time (2 s).
引用
收藏
相关论文
共 50 条
  • [21] Effects of oxygen vacancy and local spin on the ferromagnetic properties of Ni-doped In2O3 powders
    Ma, Rong-Rong
    Jiang, Feng-Xian
    Qin, Xiu-Fang
    Xu, Xiao-Hong
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (2-3) : 796 - 799
  • [22] Ni-Doped In2O3 Photothermal Coupling Catalyzed Boosted Carbon Dioxide Hydrogenation to Methanol
    Zhang, Guolin
    Xu, Qi
    Huang, Hui
    Zhou, Fei
    Yu, Liangyun
    Chen, Qi
    Yang, Jiarong
    Xiao, Yanli
    Zhang, Qi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (02) : 968 - 979
  • [23] Magnetization And XPS Study Of Pristine Bulk In2O3
    Sharma, S. C.
    Samariya, Arvind
    Dhawan, M. S.
    Sharma, P. K.
    Kumar, Sudhish
    Singhal, R. K.
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 975 - +
  • [24] Low-Temperature As-Doped In2O3 Nanowires for Room Temperature NO2 Gas Sensing
    Wang, Hang
    Fan, Guijun
    Yang, Zaixing
    Han, Ning
    Chen, Yunfa
    Yang, Jun
    ACS APPLIED NANO MATERIALS, 2022, 5 (06) : 7983 - 7992
  • [25] Spray rate effects on the NO2 gas sensor properties of Ni-doped SnO2 nanoflakes
    Abduljabbar, Qutaiba A.
    Radwan, H. A.
    Marei, Jassim M.
    Rzaij, Jamal M.
    ENGINEERING RESEARCH EXPRESS, 2022, 4 (01):
  • [26] Fabrication and NO2 Sensing Characteristics of an In2O3 Nanowire Gas Sensor
    Moon, S. E.
    Kim, E. -K.
    Lee, H. -Y.
    Lee, J. -W.
    Park, J.
    Park, S. -J.
    Kwak, J. -H.
    Park, K. -H.
    Kim, J.
    Jo, G. -H.
    Lee, T. -H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (02) : 830 - 834
  • [27] Hollow In2O3 microcubes for sensitive and selective detection of NO2 gas
    Pawar, Krishna K.
    Shaikh, Jasmin S.
    Mali, Sawanta S.
    Navale, Yuvraj H.
    Patil, Vikas B.
    Hong, Chang K.
    Patil, Pramod S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 : 726 - 736
  • [28] Synthesis and Fabrication of In2O3: CdO Nanoparticles for NO2 Gas Sensor
    Dahham, Ashwaq T.
    Aadim, Kadhim A.
    Abbas, Nada K.
    BAGHDAD SCIENCE JOURNAL, 2018, 15 (03) : 292 - 299
  • [29] Hydrothermal Synthesis of In2O3 :Ag Nanostructures for NO2 Gas Sensor
    Sabry, Raad S.
    Agool, Ibrahim R.
    Abbas, Asaad M.
    SILICON, 2019, 11 (05) : 2475 - 2478
  • [30] Hydrothermal Synthesis of In2O3 :Ag Nanostructures for NO2 Gas Sensor
    Raad S. Sabry
    Ibrahim R. Agool
    Asaad M. Abbas
    Silicon, 2019, 11 : 2475 - 2478