Bayesian design for sampling anomalous spatio-temporal data

被引:0
|
作者
Buchhorn, Katie [1 ,2 ]
Mengersen, Kerrie [1 ,2 ]
Santos-Fernandez, Edgar [1 ,2 ]
Mcgree, James [1 ,2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Ctr Data Sci, George St, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
Anomaly detection; Optimal experimental design; Robust design; Sensor data; Spatio-temporal model; Spatial model; INFORMATION;
D O I
10.1007/s11222-025-10594-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data collected from arrays of sensors are essential for informed decision-making in various systems. However, the presence of anomalies can compromise the accuracy and reliability of insights drawn from the collected data or information obtained via statistical analysis. This study aims to develop a robust Bayesian optimal experimental design framework with anomaly detection methods for high-quality data collection. We introduce a general framework that involves anomaly generation, detection and error scoring when searching for an optimal design. This method is demonstrated using two comprehensive simulated case studies: the first study uses a spatial dataset, and the second uses a spatio-temporal river network dataset. As a baseline approach, we employed a commonly used prediction-based utility function based on minimising errors. Results illustrate the trade-off between predictive accuracy and anomaly detection performance for our method under various design scenarios. An optimal design robust to anomalies ensures the collection and analysis of more trustworthy data, playing a crucial role in understanding the dynamics of complex systems such as the environment, therefore enabling informed decisions in monitoring, management, and response.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Mapping malaria in Thailand: A Bayesian spatio-temporal analysis of national surveillance data
    Pratumchart, Khanittha
    Thinkhamrop, Kavin
    Suwannatrai, Kulwadee
    Sudathip, Prayuth
    Kitchakarn, Suravadee
    Tam, Le Thanh
    Soukavong, Mick
    Varnakovida, Pariwate
    Boonmars, Thidarut
    Wisetmora, Ampas
    Moukomla, Sitthisak
    Clements, Archie C. A.
    Wangdi, Kinley
    Suwannatrai, Apiporn T.
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2025,
  • [42] Review of Sujit Sahu's "Bayesian modeling of spatio-temporal data with R''
    Brown, Patrick E.
    SPATIAL STATISTICS, 2023, 58
  • [43] Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data
    Mohammed, Shariq
    Dey, Dipak K.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (01): : 107 - 128
  • [44] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [45] WORKING WITH SPATIO-TEMPORAL DATA TYPE
    Raza, Ale
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION II, 2012, 39-B2 : 5 - 10
  • [46] Differential Privacy on Spatio-Temporal Data
    Li, Yi
    Ning, Bo
    Bai, Mei
    Zheng, Yawen
    Wang, Yu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE & APPLICATION TECHNOLOGY (ICCIA 2017), 2017, 74 : 503 - 507
  • [47] SQL extension for spatio-temporal data
    Viqueira, Jose R. Rios
    Lorentzos, Nikos A.
    VLDB JOURNAL, 2007, 16 (02): : 179 - 200
  • [48] A Spatio-temporal Data Compression Algorithm
    Wang, Lei
    Guo, Yiming
    Chen, Chen
    Yan, Yaowei
    2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 421 - 424
  • [49] SQL extension for spatio-temporal data
    Jose R. Rios Viqueira
    Nikos A. Lorentzos
    The VLDB Journal, 2007, 16 : 179 - 200
  • [50] RFID spatio-temporal data management
    Yonghui, W. (yonghuiwang@sjzu.edu.cn), 2013, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):