A deep learning approach to optimize remaining useful life prediction for Li-ion batteries

被引:1
|
作者
Iftikhar, Mahrukh [1 ]
Shoaib, Muhammad [1 ]
Altaf, Ayesha [1 ]
Iqbal, Faiza [1 ]
Villar, Santos Gracia [2 ,3 ,4 ]
Lopez, Luis Alonso Dzul [2 ,3 ,5 ]
Ashraf, Imran [6 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci, Lahore 54890, Pakistan
[2] Univ Europea Atlantico, Isabel Torres 21, Santander 39011, Spain
[3] Univ Int Iberoamer UNINI, Campeche 24560, Mexico
[4] Univ Int Cuanza, Cuito, Bie, Angola
[5] Univ Romana, La Romana, Dominican Rep
[6] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Energy efficiency; Li-ion batteries; Deep learning; AccuCell prodigy; Remaining useful life;
D O I
10.1038/s41598-024-77427-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model's name reflects its precision ("AccuCell") and predictive strength ("Prodigy"). The proposed methodology involves preparing a dataset of battery operational features, split using an 80-20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Realistic lifetime prediction approach for Li-ion batteries
    Sarasketa-Zabala, E.
    Martinez-Laserna, E.
    Berecibar, M.
    Gandiaga, I.
    Rodriguez-Martinez, L. M.
    Villarreal, I.
    APPLIED ENERGY, 2016, 162 : 839 - 852
  • [42] Modeling and Estimation of Remaining Useful Life of Single cell Li-Ion battery
    Goud, J. Saikrishna
    Kalpana, R.
    Singh, Bhim
    2018 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2018,
  • [43] An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Qu, Wenyu
    Chen, Guici
    Zhang, Tingting
    ENERGIES, 2022, 15 (19)
  • [44] Remaining Useful Life Prediction Based on Deep Learning: A Survey
    Wu, Fuhui
    Wu, Qingbo
    Tan, Yusong
    Xu, Xinghua
    SENSORS, 2024, 24 (11)
  • [45] Deep Learning Approaches to Remaining Useful Life Prediction: A Survey
    Cummins, Logan
    Killen, Brad
    Thomas, Kirby
    Barrett, Paul
    Rahimi, Shahram
    Seale, Maria
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [46] Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI
    Nair, Pranav
    Vakharia, Vinay
    Borade, Himanshu
    Shah, Milind
    Wankhede, Vishal
    ENERGIES, 2023, 16 (15)
  • [47] Remaining useful life prediction with insufficient degradation data based on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (04): : 745 - 756
  • [48] A Deep Learning-based Remaining Useful Life Prediction Approach for Engineering Systems
    Zhao, Yuyu
    Wang, Yuxiao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6249 - 6254
  • [49] Multi-bearing remaining useful life collaborative prediction: A deep learning approach
    Ren, Lei
    Cui, Jin
    Sun, Yaqiang
    Cheng, Xuejun
    JOURNAL OF MANUFACTURING SYSTEMS, 2017, 43 : 248 - 256
  • [50] A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
    Qing Xu
    Min Wu
    Edwin Khoo
    Zhenghua Chen
    Xiaoli Li
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (01) : 177 - 187