Response of photosynthesis to light and CO2 concentration in spring wheat under progressive drought stress

被引:0
|
作者
Chen, Fei [1 ]
Zhang, Kai [1 ]
Yan, Shuang [2 ]
Wang, Runyuan [1 ]
Wang, Heling [1 ]
Zhao, Hong [1 ]
Zhao, Funian [1 ]
Qi, Yue [1 ]
Yang, Yang [1 ]
Wei, Xingxing [1 ]
Tang, Yurui [1 ]
机构
[1] China Meteorol Adm, Inst Arid Meteorol, Key Open Lab Arid Climate Change & Disaster Reduct, Key Lab Arid Climat Changing & Reducing Disaster G, Lanzhou 730020, Peoples R China
[2] Beijing Miyun Dist Meteorol Bur, Beijing 101500, Peoples R China
来源
BMC PLANT BIOLOGY | 2025年 / 25卷 / 01期
基金
中国国家自然科学基金;
关键词
Progressive drought stress; Mechanistic model; Photosynthesis response curve; Optimal light intensity; Optimal atmospheric CO2 concentration; CLIMATE-CHANGE IMPACTS; WATER-USE EFFICIENCY; GROWTH; PLANTS; MECHANISMS; INTENSITY; GRAIN; RED;
D O I
10.1186/s12870-025-06355-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Global climate change significantly affects photosynthesis in spring wheat. However, the successive dynamic effects of multiple environmental interactions on photosynthesis in spring wheat have been inadequately investigated. This study conducted pot control experiments to determine photosynthesis characteristics, namely light and CO2 response curves, in spring wheat under progressive drought stress. Results Progressive drought stress caused all parameters of the light response curve to decrease logistically and all parameters of the CO2 response curve to change exponentially. There were noticeable thresholds for these parameter changes. The ability of spring wheat to utilize light was weakened by progressive drought stress. Under all drought levels, the reduction in photosynthetic capacity was greater under strong light than under weak light. The effects on CO2 utilization and the corresponding photosynthetic capacity depended on the drought level and CO2 concentration. The optimal light intensity (I-opt) for spring wheat showed a logistic decreasing trend under progressive drought stress. Unexpectedly, the optimal atmospheric CO2 concentration (CO2opt) remained at 800 mu mol<middle dot>mol(- 1) under drought stress, which was less severe than extreme drought. Conclusions Our results showed that progressive drought stress, combined with different environmental factors, had distinct impacts on the photosynthetic efficiency and carbon assimilation capacity of spring wheat, providing a basis for rational carbon and water resource utilization in spring wheat under climate change.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Stomatal limitation of photosynthesis as affected by water stress and CO2 concentration
    Janacek, J
    PHOTOSYNTHETICA, 1997, 34 (03) : 473 - 476
  • [32] Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment
    Manderscheid, Remy
    Weigel, Hans-Joachim
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2007, 27 (02) : 79 - 87
  • [33] Leaf nitrogen have a better relationship with photosynthesis performance across wheat species under elevated CO2 and drought
    Zong Yu-zheng
    Zhang Han-qing
    Li Ping
    Zhang Dong-sheng
    Hao Xing-yu
    Gao Zhi-qiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 964 - 973
  • [34] Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment
    Remy Manderscheid
    Hans-Joachim Weigel
    Agronomy for Sustainable Development, 2007, 27 : 79 - 87
  • [35] Effects of CO2 laser pretreatment on drought stress resistance in wheat
    Qiu, Zong-Bo
    Liu, Xiao
    Tian, Xiang-Jun
    Yue, Ming
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2008, 90 (01) : 17 - 25
  • [36] Effects of Elevated CO2 on the Photosynthesis, Chlorophyll Fluorescence and Yield of Two Wheat Cultivars (Triticum aestivum L.) under Persistent Drought Stress
    Yang, Qi
    Li, Ping
    Zhang, Dongsheng
    Lin, Wen
    Hao, Xingyu
    Zong, Yuzheng
    SUSTAINABILITY, 2023, 15 (02)
  • [37] Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
    Noormets, Asko
    Kull, Olevi
    Sober, Anu
    Kubiske, Mark E.
    Karnosky, David F.
    ENVIRONMENTAL POLLUTION, 2010, 158 (04) : 992 - 999
  • [38] Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat
    Li, AG
    Hou, YS
    Wall, GW
    Trent, A
    Kimball, BA
    Pinter, PJ
    CROP SCIENCE, 2000, 40 (05) : 1263 - 1270
  • [39] CONTROL OF PHOTOSYNTHESIS IN WHEAT BY CO2, O2 AND LIGHT-INTENSITY
    KOBZA, J
    EDWARDS, GE
    PLANT AND CELL PHYSIOLOGY, 1987, 28 (06) : 1141 - 1152
  • [40] Superoxide dismutase activity and photosynthesis in leaves of spring wheat under soil salinity and drought
    Storozhenko, V. O.
    Shadchina, T. M.
    ACTA PHYSIOLOGIAE PLANTARUM, 2005, 27 (04) : 94 - 95