A hybrid machine learning model for intrusion detection in wireless sensor networks leveraging data balancing and dimensionality reduction

被引:0
|
作者
Talukder, Md. Alamin [1 ]
Khalid, Majdi [2 ]
Sultana, Nasrin [3 ]
机构
[1] Int Univ Business Agr & Technol, Dept Comp Sci & Engn, Dhaka, Bangladesh
[2] Umm Al Qura Univ, Coll Comp, Dept Comp Sci & Artificial Intelligence, Mecca 21955, Saudi Arabia
[3] RMIT Univ, Dept ICT, Future Technol, Melbourne, Australia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Intrusion detection systems; Wireless sensor networks; Internet of Things; Hybrid machine learning; Model; Dimensionality reduction; Data balancing techniques;
D O I
10.1038/s41598-025-87028-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intrusion detection systems are essential for securing wireless sensor networks (WSNs) and Internet of Things (IoT) environments against various threats. This study presents a novel hybrid machine learning (ML) model that integrates KMeans-SMOTE (KMS) for data balancing and principal component analysis (PCA) for dimensionality reduction, evaluated using the WSN-DS and TON-IoT datasets. The model employs classifiers such as Decision Tree Classifier, Random Forest Classifier (RFC), and gradient boosting techniques like XGBoost (XGBC) to enhance detection accuracy and efficiency. The proposed hybrid (KMS + PCA + RFC) approach achieves remarkable performance, with an accuracy of 99.94% and an f1-score of 99.94% on the WSN-DS dataset. For the TON-IoT dataset, it achieves 99.97% accuracy and an f1-score of 99.97%, outperforming traditional SMOTE TomekLink and Generative Adversarial Network-based data balancing techniques. This hybrid approach addresses class imbalance and high-dimensionality challenges, providing scalable and robust intrusion detection. Complexity analysis reveals that the proposed model reduces training and prediction times, making it suitable for real-time applications.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] A hybrid machine learning model for intrusion detection in VANET
    Hind Bangui
    Mouzhi Ge
    Barbora Buhnova
    Computing, 2022, 104 : 503 - 531
  • [22] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    P. Indira Priya
    S. Muthurajkumar
    S. Sheeba Daisy
    Wireless Personal Communications, 2022, 122 : 2441 - 2462
  • [23] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    Priya, P. Indira
    Muthurajkumar, S.
    Daisy, S. Sheeba
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 122 (03) : 2441 - 2462
  • [24] A Hybrid Trust Based Intrusion Detection System for Wireless Sensor Networks
    Ozcelik, Mert Melih
    Irmak, Erdal
    Ozdemir, Suat
    2017 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC), 2017,
  • [25] A Lightweight Intelligent Intrusion Detection Model for Wireless Sensor Networks
    Pan, Jeng-Shyang
    Fan, Fang
    Chu, Shu-Chuan
    Zhao, Hui-Qi
    Liu, Gao-Yuan
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [26] Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers for Intrusion Detection in Computer Networks
    Dina, Ayesha Siddiqua
    Siddique, A.B.
    Manivannan, D.
    IEEE Access, 2022, 10 : 96731 - 96747
  • [27] Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers for Intrusion Detection in Computer Networks
    Dina, Ayesha Siddiqua
    Siddique, A. B.
    Manivannan, D.
    IEEE ACCESS, 2022, 10 : 96731 - 96747
  • [28] A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning
    Hassan, Fayaz
    Syed, Zafi Sherhan
    Memon, Aftab Ahmed
    Alqahtany, Saad Said
    Ahmed, Nadeem
    Al Reshan, Mana Saleh
    Asiri, Yousef
    Shaikh, Asadullah
    PLOS ONE, 2025, 20 (02):
  • [29] Machine Learning Techniques for Energy Efficiency and Anomaly Detection in Hybrid Wireless Sensor Networks
    Mittal, Mohit
    de Prado, Rocio Perez
    Kawai, Yukiko
    Nakajima, Shinsuke
    Munoz-Exposito, Jose E.
    ENERGIES, 2021, 14 (11)
  • [30] Anomaly-Based Intrusion Detection System in Wireless Sensor Networks Using Machine Learning Algorithms
    Al-Fuhaidi, Belal
    Farae, Zainab
    Al-Fahaidy, Farouk
    Nagi, Gawed
    Ghallab, Abdullatif
    Alameri, Abdu
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2024, 2024