Stretch-induced endogenous electric fields drive directed collective cell migration in vivo

被引:0
|
作者
Ferreira, Fernando [1 ,2 ]
Moreira, Sofia [1 ,2 ]
Zhao, Min [3 ,4 ]
Barriga, Elias H. [1 ,2 ]
机构
[1] Gulbenkian Inst Sci IGC, Mech Morphogenesis Lab, Oeiras, Portugal
[2] Tech Univ Dresden, Mech Morphogenesis Lab, Cluster Excellence Phys Life PoL, Dresden, Germany
[3] Univ Calif Davis, Sch Med, Dept Ophthalmol & Vis Sci, Sacramento, CA USA
[4] Univ Calif Davis, Inst Regenerat Cures, Sch Med, Dept Dermatol, Sacramento, CA USA
基金
欧洲研究理事会;
关键词
NERVOUS-SYSTEM; VOLTAGE; CURRENTS; XENOPUS; MORPHOGENESIS; POLARITY; REGENERATION; EXPRESSION; GRADIENTS;
D O I
10.1038/s41563-024-02060-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo. Finally, we propose that endogenous electric fields are mechanically established by the convergent extension movements of the ectoderm, which generate a membrane tension gradient that opens stretch-activated ion channels. Overall, these findings establish a role for electrotaxis in tissue morphogenesis, highlighting the functions of endogenous bioelectrical stimuli in non-neural contexts.
引用
收藏
页码:462 / 470
页数:29
相关论文
共 50 条
  • [11] Multiscale Cues Drive Collective Cell Migration.
    Nam, K.
    Kim, P.
    Wood, D. K.
    Kwon, S.
    Provenzano, P.
    Kim, D.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [12] Rap1 coordinates cell-cell adhesion and cytoskeletal reorganization to drive collective cell migration in vivo
    Rothenberg, Katheryn E.
    Chen, Yujun
    McDonald, Jocelyn A.
    Fernandez-Gonzalez, Rodrigo
    CURRENT BIOLOGY, 2023, 33 (13) : 2587 - +
  • [13] Stretch-induced cell proliferation is mediated by FAK-MAPK pathway
    Wang, JG
    Miyazu, M
    Xiang, P
    Li, SN
    Sokabe, M
    Naruse, K
    LIFE SCIENCES, 2005, 76 (24) : 2817 - 2825
  • [14] Protein phosphatase 2A in stretch-induced endothelial cell proliferation
    Murata, K
    Mills, I
    Sumpio, BE
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1996, 63 (03) : 311 - 319
  • [15] Directed migration of corneal epithelial sheets in physiological electric fields
    Zhao, M
    AgiusFernandez, A
    Forrester, JV
    McCaig, CD
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (13) : 2548 - 2558
  • [16] Preliminary experiments on mechanical stretch-induced activation of skeletal muscle satellite cells in vivo
    Sakata, Tomowa
    Tatsumi, Ryuichi
    Yamada, Michiko
    Shiratsuchi, Sei-Ichi
    Okamoto, Shinpei
    Mizunoya, Wataru
    Hattori, Akihito
    Ikeuchi, Yoshihide
    ANIMAL SCIENCE JOURNAL, 2006, 77 (05) : 518 - 525
  • [17] Local Influence of Cell Viability on Stretch-Induced Permeability of Alveolar Epithelial Cell Monolayers
    Song, M. J.
    Davis, C. I.
    Lawrence, G. G.
    Margulies, S. S.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2016, 9 (01) : 65 - 72
  • [18] Stretch-induced alveolar type II cell apoptosis - Role of endogenous bradykinin and PI3K-Akt signaling
    Hammerschmidt, Stefan
    Kuhn, Hartmut
    Gessner, Christian
    Seyfarth, Hans-Jurgen
    Wirtz, Hubert
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2007, 37 (06) : 699 - 705
  • [19] RABLLA DEPENDENT STRETCH-INDUCED EXOCYTOSIS IN BLADDER UMBRELLA CELL BLADDER UMBRELLA CELL
    Khandelwal, Puneet
    Apodaca, G.
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2009, 53 (04) : A47 - A47
  • [20] Local Influence of Cell Viability on Stretch-Induced Permeability of Alveolar Epithelial Cell Monolayers
    M. J. Song
    C. I. Davis
    G. G. Lawrence
    S. S. Margulies
    Cellular and Molecular Bioengineering, 2016, 9 : 65 - 72