Investigation of small-strain shear modulus of marine sediment treated with different flocculants

被引:0
|
作者
Wei-Pin Wu [1 ]
K. K. Pabodha M. Kannangara [2 ]
Wan-Huan Zhou [1 ]
机构
[1] University of Macau,State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering
[2] Hong Kong Metropolitan University,Department of Construction and Quality Management
来源
关键词
Macau marine sediment; Cationic polyacrylamide (CPAM); Chitosan; Nanoscale zero-valent iron; Small-strain shear modulus; Oedometer; Bender element;
D O I
10.1007/s44290-024-00097-5
中图分类号
学科分类号
摘要
Dredged sediments are typically found near coastal areas. Because of its high compressibility potential and low strength, multiple studies have tested various substances that can be mixed with the dredged materials to enhance the overall treatment process while minimizing post-construction settlement. Recent investigations indicated that combining flocculants such as cationic polyacrylamide (CPAM) with marine sediment improves the consolidation and permeability properties compared to untreated soil. Despite its importance, only a few studies have focused on the mechanical properties of marine sediment treated with various flocculant types. This study employs a bender element apparatus to examine the small-strain shear modulus (Gmax) variation of Macau marine sediment treated with three different flocculants: CPAM; chitosan; and nanoscale zero-valent iron (nZVI). The result revealed that the Gmax of natural marine sediment increases when blended with chitosan and CPAM with medium cationicity. Interestingly, no apparent change in Gmax values was observed when the marine sediment samples were treated using CPAM with high cationicity. In contrast, the Gmax values of soil samples treated with nZVI decreased. The comparison with existing empirical models reveals that the plasticity index is a significant parameter in determining the Gmax of Macau marine sediments. The findings from this study will support the identification of viable filling materials for future land reclamation projects in the Greater Bay Area of China.
引用
收藏
相关论文
共 50 条
  • [21] Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation
    Simatupang, Minson
    Okamura, Mitsu
    Hayashi, Kazuyuki
    Yasuhara, Hideaki
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 115 : 710 - 718
  • [22] Effects of fabric anisotropy on the small-strain shear modulus of granular materials
    Yang, Xiao-Tian
    Zhou, Yan-Guo
    Ma, Qiang
    Chen, Yun-Min
    ACTA GEOTECHNICA, 2025, 20 (01) : 131 - 148
  • [23] Influence of compaction on small-strain shear modulus of iron ore tailings
    de Sousa Silva, Joao Paulo
    Cacciari, Pedro Pazzoto
    Ribeiro, Luis Fernando
    Jefferies, Michael
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-GEOTECHNICAL ENGINEERING, 2022, 175 (02) : 247 - 260
  • [24] Influence of fines content and type on the small-strain shear modulus of sand
    Paydar, N. Akbari
    Ahmadi, M. M.
    SCIENTIA IRANICA, 2014, 21 (04) : 1281 - 1296
  • [25] A new prediction model of small-strain shear modulus of sandy soils
    Liang Ke
    Chen Guo-xing
    Hang Tian-zhu
    Liu Kang
    He Yang
    ROCK AND SOIL MECHANICS, 2020, 41 (06) : 1963 - 1970
  • [26] Influence of soil type on the effect of strain rate on small-strain cyclic shear modulus
    Vucetic, M
    Tabata, K
    SOILS AND FOUNDATIONS, 2003, 43 (05) : 161 - 173
  • [27] Factors Affecting Small-Strain Shear Modulus of Sand–Silt Mixture Considering Different Moisture Contents
    Shadi Basiri Parsa
    Mohammad Maleki
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 479 - 490
  • [28] Small-Strain Shear Modulus of Quartz Sands under Anisotropic Stress Conditions
    Chen, Yutang
    Yang, Jun
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2024, 150 (05)
  • [29] LABORATORY AND FIELD DETERMINATIONS OF SMALL-STRAIN SHEAR MODULUS FOR A STRUCTURED CHAMPLAIN CLAY
    LEFEBVRE, G
    LEBOEUF, D
    RAHHAL, ME
    LACROIX, A
    WARDE, J
    STOKOE, KH
    CANADIAN GEOTECHNICAL JOURNAL, 1994, 31 (01) : 61 - 70
  • [30] Small-strain shear modulus of silty sands: the role of sample preparation method
    Chen, Yutang
    Yang, Jun
    GEOTECHNIQUE, 2023, 74 (04): : 367 - 382