Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity

被引:0
|
作者
Du, Rui-lian [1 ,2 ]
Sun, Zhi-zhong [3 ]
机构
[1] Changzhou Univ, Sch Big Data, Changzhou 213164, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
time fractional diffusion equation; hidden-memory variable-order fractional derivative; error estimate; initial singularity; APPROXIMATION; MODELS;
D O I
10.1007/s10255-024-1054-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a novel time-stepping L1<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} formula is developed for a hidden-memory variable-order Caputo's fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.
引用
收藏
页码:1060 / 1077
页数:18
相关论文
共 50 条
  • [21] Second order difference schemes for time-fractional KdVBurgers equation with initial singularity
    Cen, Dakang
    Wang, Zhibo
    Mo, Yan
    Applied Mathematics Letters, 2021, 112
  • [22] A TIME-STEPPING FINITE ELEMENT METHOD FOR A TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATION OF HIDDEN-MEMORY SPACE-TIME VARIABLE ORDER
    Zheng X.
    Wang H.
    Electronic Transactions on Numerical Analysis, 2022, 55 : 652 - 670
  • [23] A second-order fitted scheme for time fractional telegraph equations involving weak singularity
    Ou, Caixia
    Cen, Dakang
    Wang, Zhibo
    Vong, Seakweng
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (06) : 3527 - 3551
  • [24] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [25] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    Numerical Algorithms, 2017, 76 : 573 - 598
  • [26] A second-order numerical method for space-time variable-order diffusion equation
    Lu, Shujuan
    Xu, Tao
    Feng, Zhaosheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389 (389)
  • [27] A Linearized Second-Order Difference Scheme for the Nonlinear Time-Fractional Fourth-Order Reaction-Diffusion Equation
    Sun, Hong
    Sun, Zhi-zhong
    Du, Rui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) : 1168 - 1190
  • [28] A fast second-order difference scheme for the space-time fractional equation
    Xu, Weiyan
    Sun, Hong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1326 - 1342
  • [29] A second-order difference scheme for the nonlinear time-fractional diffusion-wave equation with generalized memory kernel in the presence of time delay
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    Khibiev, Aslanbek
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [30] A second-order accurate numerical approximation for the fractional diffusion equation
    Tadjeran, C
    Meerschaert, MM
    Scheffler, HP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (01) : 205 - 213