Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity

被引:0
|
作者
Du, Rui-lian [1 ,2 ]
Sun, Zhi-zhong [3 ]
机构
[1] Changzhou Univ, Sch Big Data, Changzhou 213164, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
time fractional diffusion equation; hidden-memory variable-order fractional derivative; error estimate; initial singularity; APPROXIMATION; MODELS;
D O I
10.1007/s10255-024-1054-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a novel time-stepping L1<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} formula is developed for a hidden-memory variable-order Caputo's fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.
引用
收藏
页码:1060 / 1077
页数:18
相关论文
共 50 条