Laboratory experiments for estimating concrete properties can be costly and time-consuming. Alternatively, predictive models based on artificial intelligence (AI) methodologies offer a viable solution. This paper presents predictive modeling employing artificial neural networks (ANNs) and support vector regression (SVR) to forecast two critical properties, slump, and compressive strength, of concrete incorporating plastic waste as fine aggregate, with a focus on PET material. Over 100 data points from literature were carefully selected to train these models, considering ten input variables including the percentage of PET content (PET_%), water-cement ratio(w/c), minimum size of PET (P_min), maximum size of PET (P_max), minimum size of sand (S_min), maximum size of sand (S_max), minimum size of gravel (G_min), maximum size of gravel (G_max), cement (C) and superplasticizer (PS). The results indicated that SVR outperforms ANN in accuracy for predicting these properties. Additionally, the study acknowledges limitations and points to avenues for further research to enhance predictive modeling’s applicability in sustainable concrete design. Graphical abstract: (Figure presented.). © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.