Application of machine learning and deep learning for predicting groundwater levels in the West Coast Aquifer System, South Africa

被引:1
|
作者
Igwebuike, Ndubuisi [1 ,2 ]
Ajayi, Moyinoluwa [3 ]
Okolie, Chukwuma [4 ]
Kanyerere, Thokozani [1 ]
Halihan, Todd [2 ]
机构
[1] Univ Western Cape, Dept Earth Sci, Bellville, South Africa
[2] Oklahoma State Univ, Boone Pickens Sch Geol, Stillwater, OK 74078 USA
[3] Toronto Metropolitan Univ, Toronto, ON, Canada
[4] Univ Lagos, Dept Surveying & Geoinformat, Lagos, Nigeria
关键词
Groundwater level; Machine learning; Deep learning; Managed aquifer recharge; Random forest; Support vector machine; Recurrent neural network; RANDOM FOREST; FRAMEWORK; CLIMATE;
D O I
10.1007/s12145-024-01623-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Groundwater models are valuable tools to quantify the response of groundwater level to hydrological stresses induced by climate variability and groundwater extraction. These models strive for sustainable groundwater management by balancing recharge, discharge, and natural processes, with groundwater level serving as a critical response variable. While traditional numerical models are labour-intensive, machine learning and deep learning offer a data-driven alternative, learning from historical data to predict groundwater level variations. The groundwater level in wells is typically recorded as continuous groundwater level time series data and is essential for implementing managed aquifer recharge within a particular region. Machine learning and deep learning are essential tools to generate a data-driven approach to modeling an area, and there is a need to understand if they are the most suitable tools to improve model prediction. To address this objective, the study evaluates two machine learning algorithms - Random Forest (RF) and Support Vector Machine (SVM); and two deep learning algorithms - Simple Recurrent Neural Network (SimpleRNN) and Long Short-Term Memory (LSTM) for modeling groundwater level changes in the West Coast Aquifer System of South Africa. Analysis of regression error metrics on the test dataset revealed that SVM outperformed the other models in terms of the root mean square error, whereas random forest had the best performance in terms of the MAE. In the accuracy analysis of predicted groundwater levels, SVM achieved the highest accuracy with an MAE of 0.356 m and an RMSE of 0.372 m. The study concludes that machine learning and deep learning are effective tools for improved modeling and prediction of groundwater level. Further research can incorporate more detailed geologic information of the study area for enhanced interpretation.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Machine learning for groundwater levels: uncovering the best predictors
    Abu Saleh, Md.
    Rasel, H. M.
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2024, 10 (05)
  • [22] Comparison of machine learning models for predicting fluoride contamination in groundwater
    Rahim Barzegar
    Asghar Asghari Moghaddam
    Jan Adamowski
    Elham Fijani
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 2705 - 2718
  • [23] MaxEnt machine learning model predicts high groundwater potential areas in a fractured volcanic aquifer system
    Ballardin, Stefano
    Belladona, Rossano
    De Vargas, Tiago
    Dal Bosco, Volnei
    Bortolin, Taison Anderson
    Reginato, Pedro Antonio Roehe
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2024, 135
  • [24] Interpretable machine learning for predicting the fate and transport of pentachlorophenol in groundwater
    Rad, Mehran
    Abtahi, Azra
    Berndtsson, Ronny
    Mcknight, Ursula S.
    Aminifar, Amir
    ENVIRONMENTAL POLLUTION, 2024, 345
  • [25] Comparison of machine learning models for predicting fluoride contamination in groundwater
    Barzegar, Rahim
    Moghaddam, Asghar Asghari
    Adamowski, Jan
    Fijani, Elham
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (10) : 2705 - 2718
  • [26] Application of Machine Learning and Deep Learning in Imaging of Ischemic Stroke
    Cho, Ara
    Do, Luu-Ngoc
    Kim, Seul Kee
    Yoon, Woong
    Baek, Byung Hyun
    Park, Ilwoo
    INVESTIGATIVE MAGNETIC RESONANCE IMAGING, 2022, 26 (04) : 191 - 199
  • [27] Application of machine learning and deep learning for the prediction of HIV/AIDS
    Alehegn, Minyechil
    HIV & AIDS REVIEW, 2022, 21 (01): : 17 - 23
  • [28] Traditional Machine and Deep Learning for Predicting Toxicity Endpoints
    Norinder, Ulf
    MOLECULES, 2023, 28 (01):
  • [29] Evaluation of Machine Learning Classifiers for Predicting Deep Convection
    Ukkonen, Peter
    Makela, Antti
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) : 1784 - 1802
  • [30] Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning
    Sharma, Priyanka
    Dadheech, Pankaj
    Aneja, Nagender
    Aneja, Sandhya
    IEEE ACCESS, 2023, 11 : 111255 - 111264