Discontinuous Galerkin schemes for Stokes flow with Tresca boundary condition: iterative a posteriori error analysis

被引:0
|
作者
Djoko, J. K. [1 ]
Sayah, T. [2 ]
机构
[1] North West Univ, Sch Math & Stat Sci, Potchefstroom, South Africa
[2] Univ St Joseph, Fac Sci, Unite Rech Math & Modelisat, Lab Math & Applicat, BP 11-514 Riad El Solh, Beirut 11072050, Lebanon
关键词
Stokes equations; Tresca boundary condition; Variational inequality; Uzawa scheme; Estimator; Reliability; Efficiency; Numerical examples; FINITE-ELEMENT-METHOD; VARIATIONAL-INEQUALITIES; CONTACT PROBLEM; FRICTION; DISCRETIZATION; ALGORITHMS; EQUATIONS; APPROXIMATION; LEAK;
D O I
10.1007/s10444-024-10207-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two dimensions, we propose and analyse an iterative a posteriori error indicator for the discontinuous Galerkin finite element approximations of the Stokes equations under boundary conditions of friction type. Two sources of error are identified here, namely; the discretisation error and the linearization error. Under a smallness assumption on data, we prove that the devised error estimator is reliable. Balancing these two errors is crucial to design an adaptive strategy for mesh refinement. We illustrate the theory with some representative numerical examples.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems
    Adjerid, S
    Devine, KD
    Flaherty, JE
    Krivodonova, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) : 1097 - 1112
  • [32] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [33] A unifying theory of a posteriori error control for discontinuous Galerkin FEM
    Carstensen, Carsten
    Gudi, Thirupathi
    Jensen, Max
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 363 - 379
  • [34] A unifying theory of a posteriori error control for discontinuous Galerkin FEM
    Carsten Carstensen
    Thirupathi Gudi
    Max Jensen
    Numerische Mathematik, 2009, 112 : 363 - 379
  • [35] GOAL ORIENTED A POSTERIORI ERROR ESTIMATES FOR THE DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 15 - 23
  • [36] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [37] A priori and a posteriori error analyses of an augmented discontinuous Galerkin formulation
    Barrios, Tomas P.
    Bustinza, Rommel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 987 - 1008
  • [38] A posteriori error estimates for discontinuous Galerkin methods of obstacle problems
    Wang, Fei
    Han, Weimin
    Eichholz, Joseph
    Cheng, Xiaoliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 664 - 679
  • [39] A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Virtanen, Juha M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 427 - 458
  • [40] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Eric T. Chung
    Eun-Jae Park
    Lina Zhao
    Journal of Scientific Computing, 2018, 75 : 1079 - 1101