Three-dimensional homogeneous Lorentzian structuresThree-dimensional homogeneous Lorentzian structuresG. Calvaruso, A. Zaeim

被引:0
|
作者
Giovanni Calvaruso [1 ]
Amirhesam Zaeim [2 ]
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
[2] Payame Noor University (PNU),Department of Mathematics
关键词
Pseudo-Riemannian homogeneous structures; Lorentzian Lie groups; 53C30; 53C50; 53C15; 22E60;
D O I
10.1007/s13398-025-01707-2
中图分类号
学科分类号
摘要
We completely classify homogeneous structures on all non-symmetric three-dimensional Lorentzian Lie groups. Differently from the Riemannian case, non-canonical homogeneous structures also arise in some cases not corresponding to naturally reductive spaces.
引用
收藏
相关论文
共 50 条
  • [41] Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups
    Batat, W.
    Onda, K.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 138 - 152
  • [42] Homogeneous three-dimensional Riemannian spaces
    Josep Ferrando, Joan
    Antonio Saez, Juan
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (18)
  • [43] ON THREE-DIMENSIONAL HOMOGENEOUS FINSLER MANIFOLDS
    Tayebi, Akbar
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 141 - 151
  • [44] THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS
    Pankaj
    Chaubey, Sudhakar K.
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 613 - 626
  • [45] The Bjorling problem for minimal surfaces in a Lorentzian three-dimensional Lie group
    Cintra, Adriana A.
    Mercuri, Francesco
    Onnis, Irene I.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) : 95 - 110
  • [46] Supersymmetry on three-dimensional Lorentzian curved spaces and black hole holography
    Hristov, Kiril
    Tomasiello, Alessandro
    Zaffaroni, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [47] Supersymmetry on three-dimensional Lorentzian curved spaces and black hole holography
    Kiril Hristov
    Alessandro Tomasiello
    Alberto Zaffaroni
    Journal of High Energy Physics, 2013
  • [48] The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
    Frances, Charles
    Melnick, Karin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 183 - 218
  • [49] Random forcing of three-dimensional homogeneous turbulence
    Alvelius, K.
    Physics of Fluids, 11 (07):
  • [50] Three-dimensional seepage through a homogeneous dam
    Caffrey, John
    Bruch, John C., Jr.
    ADVANCES IN WATER RESOURCES, 1979, 2 : 167 - 176