Brain Tumor Classification Using an Ensemble of Deep Learning Techniques

被引:0
|
作者
Patro, S. Gopal Krishna [1 ]
Govil, Nikhil [2 ]
Saxena, Surabhi [3 ]
Kishore Mishra, Brojo [4 ]
Taha Zamani, Abu [5 ]
Ben Miled, Achraf [5 ]
Parveen, Nikhat [6 ]
Elshafie, Hashim [7 ]
Hamdan, Mosab [8 ]
机构
[1] Woxsen Univ, Sch Technol, Hyderabad 502345, India
[2] GLA Univ, Dept Comp Engn & Applicat CEA, Mathura 281406, India
[3] CHRIST Univ, Dept Comp Sci, Bengaluru 560074, India
[4] NIST Univ, Dept Comp Sci & Engn, Berhampur, India
[5] Northern Border Univ, Dept Comp Sci, Ar Ar 91431, Saudi Arabia
[6] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Guntur 522302, India
[7] King Khalid Univ, Coll Comp Sci, Dept Comp Engn, Abha 61421, Saudi Arabia
[8] South East Technol Univ, Walton Inst Informat & Commun Syst Sci, Waterford X91 HE36, Ireland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Brain modeling; Accuracy; Magnetic resonance imaging; Feature extraction; Predictive models; Data models; Computer science; Classification algorithms; Transfer learning; Medical diagnostic imaging; Brain tumor; deep learning; ensemble; glioma; meningioma; MRI; pituitary;
D O I
10.1109/ACCESS.2024.3485895
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The article reflects on the classification of brain tumors where several deep learning (DL) approaches are used. Both primary and secondary brain tumors reduce the patient's quality of life, and therefore, any sign of the tumor should be treated immediately for adequate response and survival rates. DL, especially in the diagnosis of brain tumors using MRI and CT scans, has applied its abilities to identify excellent patterns. The proposed ensemble framework begins with the image preprocessing of the brain MRI to enhance the quality of images. These images are then utilized to train seven DL models and all of these models recognize the features related to the tumor. There are four models which are General, Glioma, Meningioma, and Pituitary tumors or No Tumor model, which helps in reaching a joint profitable prediction and concentrating solely on the strength of the estimation and outcome. This is a significant improvement over all the individual models, attaining a 99. 43% accuracy. The data used in this research was gotten from Kaggle website and comprised of 7023 images belonging to four classes. Future work will focus on increasing the dataset size, investigating additional DL architectures, and enhancing real-time detection to improve the accuracy of diagnostic scans and their overall relevance to clinical practice.
引用
收藏
页码:162094 / 162106
页数:13
相关论文
共 50 条
  • [41] Deep learning and transfer learning for brain tumor detection and classification
    Rustom, Faris
    Moroze, Ezekiel
    Parva, Pedram
    Ogmen, Haluk
    Yazdanbakhsh, Arash
    BIOLOGY METHODS & PROTOCOLS, 2024, 9 (01):
  • [42] Deep Learning and Optimized Learning Machine for Brain Tumor Classification
    Sandhiya, B.
    Raja, S. Kanaga Suba
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [43] Speech Emotion Recognition Using Deep Neural Networks, Transfer Learning, and Ensemble Classification Techniques
    Mihalache, Serban
    Burileanu, Dragos
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2023, 26 (3-4): : 375 - 387
  • [44] Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Perez, Meglys
    Madera, Natasha
    Mansour, Romany F.
    AGRICULTURE-BASEL, 2022, 12 (07):
  • [45] Multi-level classification of Alzheimer disease using DCNN and ensemble deep learning techniques
    M. Rajesh Khanna
    Signal, Image and Video Processing, 2023, 17 : 3603 - 3611
  • [46] Multi-level classification of Alzheimer disease using DCNN and ensemble deep learning techniques
    Khanna, M. Rajesh
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3603 - 3611
  • [47] Ensemble of Multimodal Deep Learning Models for Violin Bowing Techniques Classification
    Muhammed, Zain
    Karunakaran, Nagamanoj
    Bhat, Pranamya P.
    Arya, Arti
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 40 - 48
  • [48] Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data
    Tandel, Gopal S.
    Tiwari, Ashish
    Kakde, Omprakash G.
    Gupta, Neha
    Saba, Luca
    Suri, Jasjit S.
    DIAGNOSTICS, 2023, 13 (03)
  • [49] A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and Hand-Crafted Features
    Kibriya, Hareem
    Amin, Rashid
    Kim, Jinsul
    Nawaz, Marriam
    Gantassi, Rahma
    SENSORS, 2023, 23 (10)
  • [50] EBT Deep Net: Ensemble brain tumor Deep Net for multi-classification of brain tumor in MR images
    Tejashwini, P. S.
    Thriveni, J.
    Venugopal, K. R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95