Optimizing engineering design problems using adaptive differential learning teaching-learning-based optimization: Novel approach

被引:0
|
作者
Tao, Hai [1 ,2 ]
Aldlemy, Mohammed Suleman [3 ,4 ]
Ahmadianfar, Iman [5 ]
Goliatt, Leonardo [6 ]
Marhoon, Haydar Abdulameer [7 ,8 ]
Homod, Raad Z. [9 ]
Togun, Hussein [10 ]
Yaseen, Zaher Mundher [11 ]
机构
[1] Qiannan Normal Univ Nationalities Duyun, Key Lab Complex Syst & Intelligent Optimizat Guizh, Duyun, Peoples R China
[2] Ajman Univ, Artificial Intelligence Res Ctr AIRC, POB 346, Ajman, U Arab Emirates
[3] Coll Mech Engn Technol, Dept Mech Engn, Benghazi, Libya
[4] Libyan Ctr Solar Energy Res & Studies, Benghazi, Libya
[5] Behbahan Khatam Alanbia Univ Technol, Dept Civil Engn, Behbahan, Iran
[6] Univ Fed Juiz de Fora, Computat Modeling Program, Juiz De Fora, MG, Brazil
[7] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar, Iraq
[8] Univ Kerbala, Coll Comp Sci & Informat Technol, Karbala, Iraq
[9] Basrah Univ Oil & Gas, Dept Oil & Gas Engn, Basra, Iraq
[10] Univ Baghdad, Coll Engn, Dept Mech Engn, Baghdad, Iraq
[11] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
关键词
Teaching learning-based; Optimization; Differential learning; Metaheuristic; Accelerator mechanism; ARTIFICIAL BEE COLONY; EVOLUTION; ALGORITHM; IDENTIFICATION; STRATEGIES; MODELS;
D O I
10.1016/j.eswa.2025.126425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the complexity of mathematical optimization problems intensifies in real-world scenarios, the imperative to devise sophisticated algorithms becomes evident. Consequently, researchers are intensifying their focus on formulating efficient optimization methodologies capable of adeptly navigating the feasible space. This involves enhancing established metaheuristic algorithms through the integration of diverse evolutionary procedures. The main contribution of this paper is development of an adaptive differential learning teaching-learning-based optimization (ADL-TLBO) method for effectively and reliably optimizing unknown parameters in engineering design problems. ADL-TLBO incorporates four enhancements: i) Adaptive selection between the teacher and learner phases of TLBO based on learners' ranking probabilities; ii) Introduction of an adaptive crossover rate to enhance population variety, determined by the learners' rating process; iii) Integration of differential learning (DL) to enable a broader exploration of the search area by learners during the learner phase; iv) Implementation of an accelerator mechanism to expedite convergence during the optimization process. ADL-TLBO is tested on twenty-three test functions and three real-world engineering design challenges to validate its efficiency. Comparisons reveal that ADL-TLBO exhibits superior optimization efficacy compared to other state-of-the-art competitors. ADL-TLBO outperforms other approaches in terms of convergence speed and computational effort, mainly applied to real engineering problems.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Teaching-learning-based optimization for different economic dispatch problems
    Bhattacharjee, K.
    Bhattacharya, A.
    Dey, S. Halder Nee
    SCIENTIA IRANICA, 2014, 21 (03) : 870 - 884
  • [22] Cellular teaching-learning-based optimization approach for dynamic multi-objective problems
    Birashk, Amin
    Kordestani, Javidan Kazemi
    Meybodi, Mohammad Reza
    KNOWLEDGE-BASED SYSTEMS, 2018, 141 : 148 - 177
  • [23] An Improved Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strategy for Solving Optimization Problems
    Wu, Di
    Wang, Shuang
    Liu, Qingxin
    Abualigah, Laith
    Jia, Heming
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [24] Optimizing smart manufacturing system: a digital twin approach utilizing teaching-learning-based optimization
    Reddy, Gundreddi Deepika
    Medikondu, Nageswara Rao
    Kumar, T. Vijaya
    Pesaru, Vigneshwar
    Lakshmi, A. Anitha
    Dixit, Saurav
    Kumar, Pramod
    Alzubaidi, Laith H.
    COGENT ENGINEERING, 2024, 11 (01):
  • [25] A survey of teaching-learning-based optimization
    Zou, Feng
    Chen, Debao
    Xu, Qingzheng
    NEUROCOMPUTING, 2019, 335 : 366 - 383
  • [26] An improved teaching-learning-based optimization
    Hou, Jie
    Ren, Ziwu
    Lu, Pan
    Zhang, Kunting
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3128 - 3132
  • [27] A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Wang, Ling
    Yan, Xuesong
    Hu, Chengyu
    ENERGY CONVERSION AND MANAGEMENT, 2020, 225
  • [28] Data-driven teaching-learning-based optimization (DTLBO) framework for expensive engineering problems
    Wu, Xiaojing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (04) : 2577 - 2591
  • [29] Adaptive teaching-learning-based optimization with experience learning to identify photovoltaic cell parameters
    Mi, Xianyan
    Liao, Zuowen
    Li, Shuijia
    Gu, Qiong
    ENERGY REPORTS, 2021, 7 : 4114 - 4125
  • [30] Augmented Lagrangian teaching-learning-based optimization for structural design
    Li, Hong-Shuang
    Dong, Qiao-Yue
    Yuan, Jiao-Yang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2018, 232 (12) : 2195 - 2213