Evaluation of prediction errors in nine intraocular lens calculation formulas using an explainable machine learning model

被引:0
|
作者
Richul Oh [1 ]
Joo Youn Oh [1 ]
Hyuk Jin Choi [2 ]
Mee Kum Kim [3 ]
Chang Ho Yoon [1 ]
机构
[1] Seoul National University Hospital,Department of Ophthalmology
[2] Seoul National University College of Medicine,Department of Ophthalmology
[3] Seoul National University Hospital Biomedical Research Institute,Laboratory of Ocular Regenerative Medicine and Immunology (LORMI), Artificial Eye Center
[4] Seoul National University Hospital Healthcare System Gangnam Center,Department of Ophthalmology
关键词
LightGBM; Explainable artificial intelligence; Intraocular lens; Prediction error;
D O I
10.1186/s12886-024-03801-2
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Comparison of Phakic Intraocular Lens Vault Using Conventional Nomogram and Prediction Formulas
    Ando, Wakako
    Kamiya, Kazutaka
    Hayakawa, Hideki
    Takahashi, Masahide
    Shoji, Nobuyuki
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (12) : 1 - 8
  • [22] Explainable Machine Learning Model for Rockfall Susceptibility Evaluation
    Wen, Haijia
    Hu, Jiwei
    Zhang, Jialan
    Xiang, Xuekun
    Liao, Mingyong
    GEO-RISK 2023: DEVELOPMENTS IN RELIABILITY, RISK, AND RESILIENCE, 2023, 346 : 102 - 110
  • [23] Comparison of different formulas for intraocular lens power calculation using a new optical biometer
    Kaya, F.
    Kocak, I.
    Aydin, A.
    Baybora, H.
    Karabela, Y.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2015, 38 (08): : 717 - 722
  • [24] Evaluation of 5 Intraocular Lens Power Prediction Formulas Early in Resident Surgical Training
    Honkanen, R. A.
    Adyanthaya, R.
    Chou, T.
    Wu, S. -Y.
    Parhiz, M. A. Torab
    Hague, T.
    Mehta, N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [25] Explainable Machine Learning Model for Chronic Kidney Disease Prediction
    Arif, Muhammad Shoaib
    Rehman, Ateeq Ur
    Asif, Daniyal
    ALGORITHMS, 2024, 17 (10)
  • [26] A Comprehensive Evaluation of 16 Old and New Intraocular Lens Power Calculation Formulas in Pediatric Eyes
    Achiron, Asaf
    Yahalomi, Tal
    Biran, Amit
    Levinger, Eliya
    Cohen, Eyal
    Elbaz, Uri
    Ali, Asim
    Mireskandari, Kamiar
    Tuuminen, Raimo
    Voytsekhivskyy, Oleksiy V.
    CLINICAL OPHTHALMOLOGY, 2024, 18
  • [27] Evaluation of Sum of Segments Biometry in Modern Intraocular Lens Power Calculation Formulas for Long Eyes
    Helaly, Hany Ahmed
    Gaballah, Karim Abdellatif
    Ragab, Ahmed Mahmoud
    Ibrahim, Tamer Moussa
    CLINICAL OPHTHALMOLOGY, 2025, 19 : 785 - 793
  • [28] Predicting intraocular lens tilt using a machine learning concept
    Waser, Klemens
    Honeder, Andreas
    Hirnschall, Nino
    Khalil, Haidar
    Pomberger, Leon
    Laubichler, Peter
    Mariacher, Siegfried
    Bolz, Matthias
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2024, 50 (08): : 805 - 809
  • [29] Pilot evaluation of refractive prediction errors associated with a new method for ray-tracing-based intraocular lens power calculation
    Hirnschall, Nino
    Buehren, Tobias
    Trost, Micheal
    Findl, Oliver
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2019, 45 (06): : 738 - 744
  • [30] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10