Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance

被引:0
|
作者
Vogel, Dayton J. [1 ]
Babuska, Tomas F. [1 ]
Mings, Alexander [1 ]
Macdonell, Peter A. [1 ]
Curry, John F. [1 ]
Larson, Steven R. [1 ]
Dugger, Michael T. [1 ]
机构
[1] Sandia Natl Labs, Mat Phys & Chem Sci Ctr, Albuquerque, NM 87185 USA
关键词
MoS2; Machine learning; Thin films; Deposition optimization; PVD; Tribology; Sputtering; GROWTH; MICROSTRUCTURE; ORIENTATION; DEPOSITION; MODELS; FILMS; WEAR;
D O I
10.1007/s11249-024-01957-y
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Physical vapor deposited (PVD) molybdenum disulfide (MoS2) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure-property relationships for molybdenum disulfide (MoS2) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Torsional Fretting Wear Behavior of Bonded MoS2 Solid Lubricant Coatings
    Luo, J.
    Cai, Z. B.
    Mo, J. L.
    Peng, J. F.
    Zhu, M. H.
    TRIBOLOGY TRANSACTIONS, 2015, 58 (06) : 1124 - 1130
  • [22] Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings
    Dominguez-Meister, Santiago
    Cristina Rojas, Teresa
    Brizuela, Marta
    Carlos Sanchez-Lopez, Juan
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) : 122 - 133
  • [23] A potential function of MoS2 based on machine learning
    Han, Lihong
    Qin, Guoying
    Jia, Baonan
    Chen, Yingjie
    Ma, Xiaoguang
    Lu, Pengfei
    Guan, Pengfei
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 228
  • [24] Machine Learning Analysis of Raman Spectra of MoS2
    Mao, Yu
    Dong, Ningning
    Wang, Lei
    Chen, Xin
    Wang, Hongqiang
    Wang, Zixin
    Kislyakov, Ivan M.
    Wang, Jun
    NANOMATERIALS, 2020, 10 (11) : 1 - 13
  • [25] MoS2 Nanomaterials as Lubricant Additives: A Review
    Lu, Ziyan
    Lin, Qingqing
    Cao, Zhaotao
    Li, Wanyuan
    Gong, Junjie
    Wang, Yan
    Hu, Kunhong
    Hu, Xianguo
    LUBRICANTS, 2023, 11 (12)
  • [26] SPUTTERED MOS2 LUBRICANT COATING IMPROVEMENTS
    CHRISTY, RI
    THIN SOLID FILMS, 1980, 73 (02) : 299 - 307
  • [27] Study on the preparation and fretting behavior of bonded oriented MoS2 solid lubricant coating
    Xiong, Liangliang
    Wu, Mengxue
    Fan, Xiaoqiang
    Zhu, Minhao
    FRICTION, 2024, 12 (11) : 2505 - 2518
  • [28] STRUCTURE AND MECHANOCHEMICAL PROPERTIES OF THE MoS2 SOLID LUBRICANT USING VIBRATION WAVE TREATMENT
    Bouti, S.
    Antonova, M. N.
    Hamouda, K.
    Babichev, A. P.
    Sayah, T.
    MATERIALS SCIENCE, 2018, 53 (05) : 739 - 749
  • [29] Facile synthesis of hydrodynamic solid lubricant MoS2 from molybdenum trioxide nanorods
    Malayil Gopalan Sibi
    Bharat Singh Rana
    Lakshmi Narayana Sivakumar Konathala
    Gananath D. Thakre
    S. Saran
    Anil Kumar Sinha
    Journal of Materials Research, 2013, 28 : 1962 - 1971
  • [30] Facile synthesis of hydrodynamic solid lubricant MoS2 from molybdenum trioxide nanorods
    Sibi, Malayil Gopalan
    Rana, Bharat Singh
    Konathala, Lakshmi Narayana Sivakumar
    Thakre, Gananath D.
    Saran, S.
    Sinhaa, Anil Kumar
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (14) : 1962 - 1971