Short-Term Power Load Forecasting in City Based on ISSA-BiTCN-LSTM

被引:0
|
作者
Fan, Chaodong [1 ,2 ,3 ]
Li, Gongrong [1 ]
Xiao, Leyi [2 ]
Yi, Lingzhi [1 ]
Nie, Shanghao [1 ]
机构
[1] Xiangtan Univ, Coll Automat & Elect Informat, Xiangtan 411105, Peoples R China
[2] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
[3] Hunan Software Vocat & Tech Univ, Sch Software & Informat Engn, Xiangtan 411100, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Power load forecasting; Bidirectional temporal convolutional network; Long short-term memory; Salp swarm algorithm;
D O I
10.1007/s12559-024-10401-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate short-term power load forecasting is crucial for the stable operation of power systems. In this paper, we propose an advanced forecasting model that combines the Salp Swarm Algorithm (SSA), Bidirectional Temporal Convolutional Network (BiTCN), and Long Short-Term Memory (LSTM). The model first exploits the parallel fusion of BiTCN and LSTM (BiTCN-LSTM), taking full advantage of BiTCN's strength in parallel processing of local features and the LSTM's ability to capture long-term dependencies through its gating mechanisms. Subsequently, the Improved Salp Swarm Algorithm (ISSA) is enhanced through adaptive leader ratio adjustment, dual-food design, and food lure follower strategy. Finally, the hyperparameters of the BiTCN-LSTM model are optimized using ISSA to improve the model performance. In the short-term load forecasting experiments, electric load data and weather data from Los Angeles, Tetouan, and Johor were used to compare the proposed model with eight existing models. The evaluation metrics included root mean square error (RMSE), mean absolute error (MAE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE). The experimental results showed that the model achieved lower error values than the comparison model in most cases in different seasons, working days, and rest days in different cities. In particular, the error values of RMSE, MAE, NRMSE, and MAPE were 925.11 kW, 732.63 kW, 0.019, and 1.034% for the rest days in the city of Tetouan, respectively. Compared with other algorithms, ISSA demonstrates stronger optimization capability and shorter optimization time. Additionally, model structure analysis was conducted through optimization comparison and ablation experiments, further demonstrating the proposed model's strong predictive performance.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [2] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860
  • [3] Short-Term Load Forecasting based on ResNet and LSTM
    Choi, Hyungeun
    Ryu, Seunghyoung
    Kim, Hongseok
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [4] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [5] Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM
    Chen, Houhe
    Zhu, Mingyang
    Hu, Xiao
    Wang, Jiarui
    Sun, Yong
    Yang, Jinduo
    Li, Baoju
    Meng, Xiangdong
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2023, 2023
  • [6] Short-Term Power Load Forecasting Based on VMD-SHO-LSTM
    Gao, Qingzhong
    Wu, Shuai
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 346 - 353
  • [7] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [8] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174
  • [9] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186
  • [10] A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting
    Liu, Mingping
    Li, Yangze
    Hu, Jiangong
    Wu, Xiaolong
    Deng, Suhui
    Li, Hongqiao
    ENERGIES, 2024, 17 (01)