Deep residual 2D convolutional neural network for cardiovascular disease classification

被引:0
|
作者
Elyamani, Haneen A. [1 ]
Salem, Mohammed A. [2 ]
Melgani, Farid [3 ]
Yhiea, N. M. [1 ,4 ]
机构
[1] Suez Canal Univ, Fac Sci, Dept Math, Ismailia 44745, Egypt
[2] German Univ Cairo GUC, Media Engn & Technol, Cairo, Egypt
[3] Univ Trento, Dept Informat Engn & Comp Sci, Via Sommar 14, I-3812 Trento, Italy
[4] British Univ Egypt BUE, Fac Informat & Comp Sci, Cairo, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
ARRHYTHMIA DETECTION; ECG; MODEL; ALGORITHM; SEQUENCE;
D O I
10.1038/s41598-024-72382-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cardiovascular disease (CVD) continues to be a major global health concern, underscoring the need for advancements in medical care. The use of electrocardiograms (ECGs) is crucial for diagnosing cardiac conditions. However, the reliance on professional expertise for manual ECG interpretation poses challenges for expanding accessible healthcare, particularly in community hospitals. To address this, there is a growing interest in leveraging automated and AI-driven ECG analysis systems, which can enhance diagnostic accuracy and efficiency, making quality cardiac care more accessible to a broader population. In this study, we implemented a novel deep two-dimensional convolutional neural network (2D-CNN) on a dataset of PTB-XL for cardiac disorder detection. The studies were performed on 2, 5, and 23 classes of cardiovascular diseases. The our network in classifying healthy/sick patients achived an AUC of 95% and an average accuracy of 87.85%. In 5-classes classification, our model achieved an AUC of 93.46% with an average accuracy of 89.87%. In a more complex scenario involving classification into 23 different classes, the model achieved an AUC of 92.18% and an accuracy of 96.88%. According to the experimental results, our model obtained the best classification result compared to the other methods based on the same public dataset. This indicates that our method can aid healthcare professionals in the clinical analysis of ECGs, offering valuable assistance in diagnosing CVD and contributing to the advancement of computer-aided diagnosis technology.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Wavelet neural network for 2D object classification
    Pan, Hong
    Jin, Li-Zuo
    Yuan, Xiao-Hui
    Xia, Si-Yu
    Li, Jiu-Xian
    Xia, Liang-Zheng
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1965 - 1968
  • [32] 2D Convolutional Neural Networks for Alzheimer's Disease Classification from Brain MRI
    Tuba, Eva
    Tallon-Ballesteros, Antonio J.
    Tuba, Milan
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II, 2025, 15347 : 557 - 565
  • [33] Hilbert Vector Convolutional Neural Network: 2D Neural Network on 1D Data
    Loka, Nasrulloh R. B. S.
    Kavitha, Muthusubash
    Kurita, Takio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 458 - 470
  • [34] Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network
    Regina Esi Turkson
    Hong Qu
    Cobbinah Bernard Mawuli
    Moses J. Eghan
    Neural Processing Letters, 2021, 53 : 2649 - 2663
  • [35] Deep convolutional neural network based medical image classification for disease diagnosis
    Samir S. Yadav
    Shivajirao M. Jadhav
    Journal of Big Data, 6
  • [36] Black gram disease classification using a novel deep convolutional neural network
    Talasila, Srinivas
    Rawal, Kirti
    Sethi, Gaurav
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 44309 - 44333
  • [37] Efficient Gastrointestinal Disease Classification Using Pretrained Deep Convolutional Neural Network
    Noor, Muhammad Nouman
    Nazir, Muhammad
    Khan, Sajid Ali
    Song, Oh-Young
    Ashraf, Imran
    ELECTRONICS, 2023, 12 (07)
  • [38] A deep convolutional neural network architecture for interstitial lung disease pattern classification
    Huang, Sheng
    Lee, Feifei
    Miao, Ran
    Si, Qin
    Lu, Chaowen
    Chen, Qiu
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (04) : 725 - 737
  • [39] Deep convolutional neural network based medical image classification for disease diagnosis
    Yadav, Samir S.
    Jadhav, Shivajirao M.
    JOURNAL OF BIG DATA, 2019, 6 (01)
  • [40] A deep convolutional neural network architecture for interstitial lung disease pattern classification
    Sheng Huang
    Feifei Lee
    Ran Miao
    Qin Si
    Chaowen Lu
    Qiu Chen
    Medical & Biological Engineering & Computing, 2020, 58 : 725 - 737