Symmetric CRLH-TL filter based dual band microstrip antenna design approach

被引:0
|
作者
Beigverdi, Farshid [1 ]
Bemani, Mohammad [1 ]
Nikmehr, Saied [1 ]
机构
[1] Univ Tabriz, Dept Elect & Comp Engn, Tabriz 5166616471, Iran
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
CRLH-TL; ZOR; Antenna; CSRR; WiMAX; Dual-band; SCRLH-TL; HANDED TRANSMISSION-LINE; LEAKY-WAVE ANTENNA; PATCH ANTENNA; BEAM;
D O I
10.1038/s41598-024-77006-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a novel filter-based analysis for the conventional rectangular patch antenna (RPA) using the Composite Right/Left-Handed Transmission Line (CRLH-TL) theory. We introduce two circuit models for RPA, described by lumped components and transmission line (TL) elements. An RPA is considered a Symmetric CRLH-TL (SCRLH-TL). We validated the analysis by comparing the circuit model and full-wave analysis simulation results. The TL circuit model error in the full-wave analysis was less than 5%. A dual-band Zeroth-Order Resonant (ZOR) antenna is designed and manufactured based on the introduced Lumped element circuit model, which exhibits filtering characteristics in both bands. We obtain the antenna circuit model by incorporating the RPA lump circuit model with LC resonators. We implemented the antenna structure by combining the RPA and complementary split-ring resonators (CSRR) modeled by the LC resonators. We initialized the antenna center frequency bands for WiMAX 2.45 GHz and 3.60 GHz. The CSRRs control the configuration of the center frequencies. The simulation and measured results are in good agreement. The proposed antenna dimensions are 0.66x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}0.66x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}0.012 lambda g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _g$$\end{document} at 2.45 GHz (43.22x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}43.22x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}0.81 mm3). The measured gains are 3.47 dB and 4.64 dB for 2.45 GHz and 3.60 GHz, respectively. Two radiation nulls were observed at 2.09 GHz and 2.98 GHz for the 2.45 GHz band and one radiation null at 3.45 GHz for the 3.60 GHz band. Also, the fractional bandwidth is 4.03% and 1.39%, respectively. The radiation pattern is nearly omnidirectional. The simulated efficiency is 90% for 2.45 GHz and 87% for 3.60 GHz frequency bands.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Design and Simulation of Microstrip Antenna Using Composite Right/Left Handed Transmission Line (CRLH-TL) Technique for LTE and Radar Applications
    Halim, Bishoy I.
    Boutejdar, Ahmed
    2019 IEEE INTERNATIONAL ELECTROMAGNETICS AND ANTENNA CONFERENCE (IEMANTENNA), 2019, : 40 - 45
  • [42] Design of CRLH-TL UWB Filter Using Interdigital Capacitor and Short Stub by Genetic Algorithm
    Ishikawa, Hinata
    Hirayama, Atsuya
    Fujino, Seiya
    Ohno, Takanobu
    Tanii, Kosei
    Iida, Satoko
    2022 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2022, : 467 - 469
  • [43] A Novel Compact Tri-Band Bandpass Filter Based on Dual-Mode CRLH-TL Resonator and Transversal Stepped-Impedance Resonator
    Cao, Hailin
    Yi, Mao
    Chen, Huan
    Liang, Jianshuo
    Yu, Yantao
    Tan, Xiaoheng
    Yang, Shizhong
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2015, 56 : 53 - 58
  • [44] Multi-function Antenna Based on CRLH-TL for Navigation and Mobile Communication Applications
    Liao, Haixv
    Luan, Xiuzhen
    Fan, Jianxiu
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [45] New Compact antenna based on simplified CRLH-TL for UWB wireless communication systems
    Alibakhshi-Kenari, Mohammad
    Naser-Moghadasi, Mohammad
    Sadeghzadeh, Ramazan Ali
    Virdee, Bal Singh
    Limiti, Ernesto
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2016, 26 (03) : 217 - 225
  • [46] UWB Miniature Antenna Based on the CRLH-TL with Increasing the Gain for Advanced Electromagnetic Requirements
    Alibakhshi-kenari, Mohammad
    Naser-Moghadasi, Mohammad
    ADVANCED ELECTROMAGNETICS, 2014, 3 (01) : 61 - 65
  • [47] Miniaturized Ultra-Wideband Bandpass Filter Based on CRLH-TL Unit Cell
    Alburaikan, Abdullah
    Aqeeli, Mohammed
    Huang, Xianjun
    Hu, Zhirun
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 540 - 543
  • [48] Beam-Switch of Microstrip Array with Series CRLH-TL Feed Configuration
    Li Yuanchun
    Zhu Qi
    Mao Wenhui
    Xu Shanjia
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 2418 - 2421
  • [49] An Optimal Design of the Compact CRLH-TL UWB Filter Using a Modified Evolution Strategy Algorithm
    Oh, Seung-Hun
    Wu, Chao
    Chung, Tae Kyung
    Kim, Hyeong-Seok
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (02) : 653 - 658
  • [50] Asymmetric frequency reconfigurable compact antenna using CRLH-TL structure
    Yang, Hong
    He, Li
    Zhang, Hongsheng
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2021, 35 (03) : 336 - 347