Marine environmentally friendly antifouling materials are emerging as a viable and promising alternative to the conventional toxic antifouling agents. Within this field, the exploration of natural antifouling substances has become a significant research focus, representing an auspicious avenue for innovation in eco-friendly technologies. In this study, we delve into the development of eco-friendly antifouling coatings through a novel chemical modification process. By incorporating natural antifouling agents onto an acrylic acid substrate through a grafting process, we have successfully synthesized three distinct varieties of natural antifouling coatings: isobornyl acrylate polymer (IBAP), acrylate indole polymer (AIP), and indole isobornyl co-modified acrylate polymer (IAA-IBOMA). Through meticulous surface characterization, structural analysis, and a comprehensive suite of antifouling performance tests, our findings indicate that these coatings exhibit superior antifouling properties. Notably, the IAA-IBOMA coating demonstrated exceptional anti-adhesion effects. The specific inhibition rates against E. coli, S. aureus, and Pseudoalteromonas aeruginosa were impressive, achieving 93.5%, 92.8%, and 95.7%, respectively. Moreover, the anti-mussel selective adhesion inhibition rate was found to be 93.3%. Furthermore, environmental toxicity assessments have validated the eco-friendly and stable nature of the IAA-IBOMA coating. These results underscore the potential of these natural product-based coatings as sustainable solutions for the marine industry. This work offers valuable insights and holds significant implications for guiding the future development of environmentally friendly antifouling coatings, steering the industry towards a more sustainable and eco-conscious direction.