Numerical approximation of nonlinear stochastic Volterra integral equation based on Walsh function

被引:0
|
作者
Paikaray P.P. [1 ]
Parida N.C. [1 ]
Beuria S. [1 ]
Nikan O. [2 ]
机构
[1] Department of Mathematics, College of Basic Science and Humanities, OUAT, Bhubaneswar
[2] School of Mathematics and Computer Science, Iran University of Science and Technology, Tehran
关键词
Brownian motion; Collocation method; It (Formula Presented.) integral; Lipschitz condition; Non-linear stochastic Volterra integral equation; Walsh approximation;
D O I
10.1007/s40324-023-00341-5
中图分类号
学科分类号
摘要
This paper adopts a highly effective numerical approach for approximating non-linear stochastic Volterra integral equations (NLSVIEs) based on the operational matrices of the Walsh function and the collocation method. The method transforms the integral equation into a system of algebraic equations, which allows for the derivation of an approximate solution. Error analysis is performed, confirming the effectiveness of the proposed method, which results in a linear order of convergence. Numerical examples are provided to illustrate the precision and effectiveness of the proposed method. © 2023, The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada.
引用
收藏
页码:665 / 678
页数:13
相关论文
共 50 条
  • [31] NUMERICAL SOLUTION OF VOLTERRA INTEGRAL-EQUATION
    STEINBERG, J
    NUMERISCHE MATHEMATIK, 1972, 19 (03) : 212 - +
  • [32] Existence, uniqueness, and numerical approximation of solutions of a nonlinear functional integral equation
    Bazm, Sohrab
    Hosseini, Alireza
    Azevedo, Juarez S.
    Pahlevani, Fatemeh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 439
  • [33] THE COMPUTATIONAL EFFICIENCY OF WALSH APPROXIMATION FOR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS
    Anderyance, S.
    Hadizadeh, M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (02) : 263 - 270
  • [34] NUMERICAL SOLUTION OF FRACTIONAL VOLTERRA INTEGRAL EQUATIONS BASED ON RATIONAL CHEBYSHEV APPROXIMATION
    Deniz, S.
    Ozger, F.
    Ozger, Z. O.
    Mohiuddine, S. A.
    Ersoy, M. T.
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1287 - 1305
  • [35] ULAM-HYERS-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC ITO-VOLTERRA INTEGRAL EQUATION
    Ngo Phuoc Nguyen Ngoc
    Nguyen Van Vinh
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (04): : 397 - 411
  • [36] Collocation methods for nonlinear stochastic Volterra integral equations
    Xiaoli Xu
    Yu Xiao
    Haiying Zhang
    Computational and Applied Mathematics, 2020, 39
  • [37] Wong-Zakai approximation of stochastic Volterra integral equations
    Kamrani, Minoo
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2024, 12 (03): : 484 - 501
  • [38] A Volterra series approach to the approximation of stochastic nonlinear dynamics
    Van de Wouw, N
    Nijmeijer, H
    Van Campen, DH
    NONLINEAR DYNAMICS, 2002, 27 (04) : 397 - 409
  • [39] Numerical Solution of Fuzzy Stochastic Volterra-Fredholm Integral Equation with Imprecisely Defined Parameters
    Nayak, Sukanta
    RECENT TRENDS IN WAVE MECHANICS AND VIBRATIONS, WMVC 2018, 2020, : 107 - 117
  • [40] A Volterra Series Approach to the Approximation of Stochastic Nonlinear Dynamics
    N. van de Wouw
    H. Nijmeijer
    D. H. van Campen
    Nonlinear Dynamics, 2002, 27 : 397 - 409