Comparative analysis of machine learning approaches for predicting the risk of vaginal laxity

被引:0
|
作者
Zhao, Hongguo [1 ]
Liu, Peng [1 ]
Chen, Fei [1 ]
Wang, Mengjuan [1 ]
Liu, Jiaxi [1 ]
Fu, Xiling [1 ]
Yu, Hang [1 ]
Nai, Manman [1 ]
Li, Lei [1 ]
Li, Xinbin [2 ]
机构
[1] Zhengzhou Univ, Dept Obstet & Gynecol, Affiliated Hosp 3, Zhengzhou 450052, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Vaginal laxity; Machine learning; Modified Oxford muscle strength grading; Pelvic floor pressure assessment;
D O I
10.1038/s41598-025-86931-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study develops predictive models for Chinese female patients with VL utilizing machine learning techniques. The aim is to create an effective model that can assist in clinical diagnosis and treatment of vaginal relaxation, thereby enhancing women's pelvic floor health. In total, 1184 women with VL have been randomly selected and categorized into groups using the finger measurement method. Among them, there are 383 cases of mild VL, 405 cases of moderate VL, and 396 cases of severe VL. Concurrently, 396 healthy women without VL who underwent routine health examinations have been chosen at random and assigned to the non-VL group. Based on 1580 cases, we have established LightGBM, Random Forest, XGBoost, and AdaBoost models based on training dataset using 5-fold cross-validation and GridSearch, and analyzed the performance of the models on the hold-out test dataset. The confusion matrix, precision, recall, F1 score, overall accuracy, and ROC curve of the models on the hold-out test dataset are compared. The overall accuracy of LightGBM model, RF model, XGBoost model, and AdaBoost model are 0.8987, 0.8987, 0.8987, and 0.8457, respectively. The average AUC of LightGBM model is 0.976, the one of RF model is 0.9763, the one of XGBoost model is 0.9775, and the one of AdaBoost model is 0.928. The XGBoost model has the more comprehensive and reasonable performance among the four prediction models, which can accurately distinguish between healthy, mild VL, as well as moderate VL and severe VL, which can assist doctors in diagnosing persons' conditions more accurately, devising personalized treatment plans, avoiding unnecessary surgeries, reducing persons' psychological stress, improving patient compliance and treatment outcomes, thus enhancing overall treatment results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Comparative analysis of machine learning algorithms for predicting Dubai property prices
    Balila, Abdulsalam Elnaeem
    Bin Shabri, Ani
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10
  • [32] A Comparative Analysis of Machine Learning Models for Predicting Loess Collapse Potential
    Sahand Motameni
    Fateme Rostami
    Sara Farzai
    Abbas Soroush
    Geotechnical and Geological Engineering, 2024, 42 : 881 - 894
  • [33] Face Recognition Comparative Analysis Using Different Machine Learning Approaches
    Ahmed, Nisar
    Khan, Farhan Ajmal
    Ullah, Zain
    Ahmed, Hasnain
    Shahzad, Taimur
    Ali, Nableela
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2021, 15 (01) : 265 - 272
  • [34] Machine learning approaches in the interpretation of endobronchial ultrasound images: a comparative analysis
    Koseoglu, Fatos Dilan
    Alici, Ibrahim Onur
    Er, Orhan
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2023, 37 (12): : 9339 - 9346
  • [35] A comparative analysis of machine learning approaches to gap filling meteorological datasets
    Lalic, Branislava
    Stapleton, Adam
    Vergauwen, Thomas
    Caluwaerts, Steven
    Eichelmann, Elke
    Roantree, Mark
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (24)
  • [36] Machine learning approaches in the interpretation of endobronchial ultrasound images: a comparative analysis
    Fatos Dilan Koseoglu
    Ibrahim Onur Alıcı
    Orhan Er
    Surgical Endoscopy, 2023, 37 : 9339 - 9346
  • [37] Comparative Analysis of Features Based Machine Learning Approaches for Phishing Detection
    Jain, Ankit Kumar
    Gupta, B. B.
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 2125 - 2130
  • [38] Comparative Analysis of Various Machine Learning Approaches for Bitcoin Price Prediction
    Muvvala, Abhishek
    Chivukula, Rohit
    Lakshmi, T. Jaya
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN SIGNAL PROCESSING AND ARTIFICIAL INTELLIGENCE, ASPAI' 2020, 2020, : 161 - 164
  • [39] A comparative analysis of gene expression profiling by statistical and machine learning approaches
    Bontonou, Myriam
    Haget, Anais
    Boulougouri, Maria
    Audit, Benjamin
    Borgnat, Pierre
    Arbona, Jean-Michel
    BIOINFORMATICS ADVANCES, 2025, 5 (01):
  • [40] Machine Learning: Predicting Credit Risk
    Melo, Rafael Almeida Pereira
    Guimaraes, Paulo Henrique Sales
    Melo, Marcel Irving Pereira
    SIGMAE, 2024, 13 (04): : 219 - 230