A lightweight weed detection model for cotton fields based on an improved YOLOv8n

被引:0
|
作者
Wang, Jun [1 ]
Qi, Zhengyuan [1 ]
Wang, Yanlong [1 ]
Liu, Yanyang [1 ]
机构
[1] Gansu Agr Univ, Coll Informat Sci & Technol, Lanzhou 730070, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Object detection; Weed detection; YOLOv8; Deep learning; Lightweight model; Cotton; MANAGEMENT; IMPACT;
D O I
10.1038/s41598-024-84748-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In modern agriculture, the proliferation of weeds in cotton fields poses a significant threat to the healthy growth and yield of crops. Therefore, efficient detection and control of cotton field weeds are of paramount importance. In recent years, deep learning models have shown great potential in the detection of cotton field weeds, achieving high-precision weed recognition. However, existing deep learning models, despite their high accuracy, often have complex computations and high resource consumption, making them difficult to apply in practical scenarios. To address this issue, developing efficient and lightweight detection methods for weed recognition in cotton fields is crucial for effective weed control. This study proposes the YOLO-Weed Nano algorithm based on the improved YOLOv8n model. First, the Depthwise Separable Convolution (DSC) structure is used to improve the HGNetV2 network, creating the DS_HGNetV2 network to replace the backbone of the YOLOv8n model. Secondly, the Bidirectional Feature Pyramid Network (BiFPN) is introduced to enhance the feature fusion layer, further optimizing the model's ability to recognize weed features in complex backgrounds. Finally, a lightweight detection head, LiteDetect, suitable for the BiFPN structure, is designed to streamline the model structure and reduce computational load. Experimental results show that compared to the original YOLOv8n model, YOLO-Weed Nano improves mAP by 1%, while reducing the number of parameters, computation, and weights by 63.8%, 42%, and 60.7%, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [42] New Plum Detection in Complex Environments Based on Improved YOLOv8n
    Chen, Xiaokang
    Dong, Genggeng
    Fan, Xiangpeng
    Xu, Yan
    Zou, Xiangjun
    Zhou, Jianping
    Jiang, Hong
    AGRONOMY-BASEL, 2024, 14 (12):
  • [43] A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n
    Xie, Wu
    Feng, Feihong
    Zhang, Huimin
    SENSORS, 2024, 24 (14)
  • [44] Field cabbage detection and positioning system based on improved YOLOv8n
    Jiang, Ping
    Qi, Aolin
    Zhong, Jiao
    Luo, Yahui
    Hu, Wenwu
    Shi, Yixin
    Liu, Tianyu
    PLANT METHODS, 2024, 20 (01)
  • [45] Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n
    Zhang, Tian
    Pan, Pengfei
    Zhang, Jie
    Zhang, Xiaochen
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [46] Star-YOLO: A lightweight and efficient model for weed detection in cotton fields using advanced YOLOv8 improvements
    Zheng, Lu
    Zhu, Chengao
    Liu, Lu
    Yang, Yan
    Wang, Jun
    Xia, Wei
    Xu, Ke
    Tie, Jun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 235
  • [47] MW-YOLO: Improved YOLOv8n for Lightweight Dense Vehicle Object Detection Algorithm
    Zhou, Wanzhen
    Wang, Junjie
    Song, Yufei
    Zhang, Xiaoran
    Liu, Zhiguo
    Ma, Yupeng
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 28 - 35
  • [48] Recognition Model for Tea Grading and Counting Based on the Improved YOLOv8n
    Xia, Yuxin
    Wang, Zejun
    Cao, Zhiyong
    Chen, Yaping
    Li, Limei
    Chen, Lijiao
    Zhang, Shihao
    Wang, Chun
    Li, Hongxu
    Wang, Baijuan
    AGRONOMY-BASEL, 2024, 14 (06):
  • [49] A lightweight coal gangue detection method based on multispectral imaging and enhanced YOLOv8n
    Yan, Pengcheng
    Wang, Wenchang
    Li, Guodong
    Zhao, Yuting
    Wang, Jingbao
    Wen, Ziming
    MICROCHEMICAL JOURNAL, 2024, 199
  • [50] A Lightweight Person Detector for Surveillance Footage Based on YOLOv8n
    Wang, Qicheng
    Feng, Guoqiang
    Li, Zongzhe
    SENSORS, 2025, 25 (02)