A lightweight weed detection model for cotton fields based on an improved YOLOv8n

被引:0
|
作者
Wang, Jun [1 ]
Qi, Zhengyuan [1 ]
Wang, Yanlong [1 ]
Liu, Yanyang [1 ]
机构
[1] Gansu Agr Univ, Coll Informat Sci & Technol, Lanzhou 730070, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Object detection; Weed detection; YOLOv8; Deep learning; Lightweight model; Cotton; MANAGEMENT; IMPACT;
D O I
10.1038/s41598-024-84748-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In modern agriculture, the proliferation of weeds in cotton fields poses a significant threat to the healthy growth and yield of crops. Therefore, efficient detection and control of cotton field weeds are of paramount importance. In recent years, deep learning models have shown great potential in the detection of cotton field weeds, achieving high-precision weed recognition. However, existing deep learning models, despite their high accuracy, often have complex computations and high resource consumption, making them difficult to apply in practical scenarios. To address this issue, developing efficient and lightweight detection methods for weed recognition in cotton fields is crucial for effective weed control. This study proposes the YOLO-Weed Nano algorithm based on the improved YOLOv8n model. First, the Depthwise Separable Convolution (DSC) structure is used to improve the HGNetV2 network, creating the DS_HGNetV2 network to replace the backbone of the YOLOv8n model. Secondly, the Bidirectional Feature Pyramid Network (BiFPN) is introduced to enhance the feature fusion layer, further optimizing the model's ability to recognize weed features in complex backgrounds. Finally, a lightweight detection head, LiteDetect, suitable for the BiFPN structure, is designed to streamline the model structure and reduce computational load. Experimental results show that compared to the original YOLOv8n model, YOLO-Weed Nano improves mAP by 1%, while reducing the number of parameters, computation, and weights by 63.8%, 42%, and 60.7%, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Improved YOLOv8n for Lightweight Ship Detection
    Gao, Zhiguang
    Yu, Xiaoyan
    Rong, Xianwei
    Wang, Wenqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [2] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [3] Fabric Defect Detection Based on Improved Lightweight YOLOv8n
    Ma, Shuangbao
    Liu, Yuna
    Zhang, Yapeng
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [4] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [5] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [6] Research on Improved Lightweight Fish Detection Algorithm Based on Yolov8n
    Zhang, Qingyang
    Chen, Shizhe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [7] Improved lightweight flame smoke detection algorithm for YOLOv8n
    Zhang, Yu
    Xiao, Xia
    Wang, Weiling
    Wang, Chunyu
    Jin, Xin
    Wang, Yue
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1544 - 1549
  • [8] Detection of coal gangue based on MSRCR algorithm and improved lightweight YOLOv8n
    Hong, Yan
    Pan, Ruixian
    Su, Jingming
    Pang, Rong
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2024,
  • [9] Detection of Traffic Signs Based on Lightweight YOLOv8n
    Liu, Shihong
    Li, Shiwei
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1200 - 1204
  • [10] A Lightweight Model for Weed Detection Based on the Improved YOLOv8s Network in Maize Fields
    Huang, Jinyong
    Xia, Xu
    Diao, Zhihua
    Li, Xingyi
    Zhao, Suna
    Zhang, Jingcheng
    Zhang, Baohua
    Li, Guoqiang
    AGRONOMY-BASEL, 2024, 14 (12):