Ensemble Machine Learning Geostatistical Hybrid Models for Grade Control

被引:0
|
作者
Erten, Gamze Erdogan [1 ]
Mokdad, Karim [1 ]
da Silva, Camilla Zacche [2 ]
Nisenson, Jed [3 ]
Brandao, Gabriela [3 ]
Boisvert, Jeff [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, 921-116 St NW, Edmonton, AB T6G 1H9, Canada
[2] Nevada Gold Mines, Elko, NV USA
[3] Teck Resources Ltd, Suite 3300,550 Burrard St, Vancouver, BC V6C 0B3, Canada
关键词
Machine learning; Geostatistics; Hybrid modelling; Ensemble; Elliptical radial basis neural network; Locally weighted support vector regression; Kernel density estimated trend; Convolutional neural network; NEURAL-NETWORK; ORE; REGRESSION; ALGORITHMS; PREDICTION;
D O I
10.1007/s11004-024-10172-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Samples collected from densely drilled grade control boreholes are used to create spatial models for ore sorting, classifying material as ore or waste prior to extraction. Geostatistics (typically ordinary kriging) is used to spatially estimate mineral grade at unknown locations; however, hybrid techniques combine geostatistical and machine learning models to take advantage of available dense data and improve overall model performance. There are many different machine learning models; using an ensemble learning-based approach that combines individual models improves estimation accuracy. Two-layer stacked, global, and local weighted ensemble models are proposed. In the two-layer stacking ensemble (SE), the first layer combines n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n $$\end{document} individual models; this work considers four individual models, elliptical radial basis neural network (ERBFN), locally weighted support vector regression (LWSVR), kernel density estimated trend (KDET), and a novel convolutional neural network (CNN). In the second layer, either random forest (RF) or support vector regression (SVR) is trained on outputs of the first layer to generate the final model, which is incorporated into intrinsic collocated cokriging (ICCK) as a secondary variable. The global and local weighting-based ensemble models combine ICCK estimates in which each individual model is considered a secondary variable whose performance is evaluated with cross-validation error. The performance of the ensemble models is compared to inverse distance, ordinary kriging, and hybrid models assessed on 10 blast areas at Teck Resources Limited's Carmen de Andacollo copper mine in Chile. Considering these 10 blasts, ordinary kriging obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.39, inverse distance obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.38, and the proposed ensemble approach obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.67, demonstrating a clear improvement over traditional spatial estimation workflows. The proposed method is fully automated and requires the same amount of professional time as implementing ordinary kriging.
引用
收藏
页码:499 / 522
页数:24
相关论文
共 50 条
  • [41] Ensemble approaches for leveraging machine learning models in load estimation
    Cheung, C.
    Seabrook, E.
    Valdes, J. J.
    Hamaimou, Z. A.
    Biondic, C.
    AERONAUTICAL JOURNAL, 2023, 127 (1318): : 2082 - 2104
  • [42] Ensemble Machine Learning Models for Simulating the Missile Defense System
    Jin, Sihwa
    Dahouda, Mwamba Kasongo
    Joe, Inwhee
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 142 - 156
  • [43] AcneGrader: An ensemble pruning of the deep learning base models to grade acne
    Liu, Shuai
    Fan, Yusi
    Duan, Meiyu
    Wang, Yueying
    Su, Guoxiong
    Ren, Yanjiao
    Huang, Lan
    Zhou, Fengfeng
    SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (05) : 677 - 688
  • [44] A Reinforcement Learning Approach for Ensemble Machine Learning Models in Peak Electricity Forecasting
    Pannakkong, Warut
    Vinh, Vu Thanh
    Tuyen, Nguyen Ngoc Minh
    Buddhakulsomsiri, Jirachai
    ENERGIES, 2023, 16 (13)
  • [45] Diagnosing Drainage Problems in Coastal Areas Using Machine-Learning and Geostatistical Models
    Darzi-Naftchali, Abdullah
    Karandish, Fatemeh
    Asgari, Ahmad
    IRRIGATION AND DRAINAGE, 2017, 66 (03) : 428 - 438
  • [46] USING MACHINE LEARNING PREDICTIONS OF MALARIA PREVALENCE TO IMPROVE GEOSTATISTICAL DISAGGREGATION MODELS OF INCIDENCE
    Lucas, T. C. D.
    Nandi, A.
    Nguyen, M.
    Rumisha, S.
    Battle, K. E.
    Howes, R. E.
    Cameron, E.
    Gething, P. W.
    Weiss, D. J.
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2019, 113 : S62 - S62
  • [47] Advancing Taxonomy with Machine Learning: A Hybrid Ensemble for Species and Genus Classification
    Nanni, Loris
    De Gobbi, Matteo
    Matos Junior, Roger De Almeida
    Fusaro, Daniel
    ALGORITHMS, 2025, 18 (02)
  • [48] Hybrid Swarm Intelligence Algorithms with Ensemble Machine Learning for Medical Diagnosis
    Al-Tashi, Qasem
    Rais, Helmi
    Abdulkadir, Said Jadid
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2018,
  • [49] Hybrid Machine Learning Ensemble Techniques for Modeling Dissolved Oxygen Concentration
    Abba, Sani Isah
    Linh, Nguyen Thi Thuy
    Abdullahi, Jazuli
    Ali, Shaban Ismael Albrka
    Pham, Quoc Bao
    Abdulkadir, Rabiu Aliyu
    Costache, Romulus
    Nam, Van Thai
    Anh, Duong Tran
    IEEE ACCESS, 2020, 8 : 157218 - 157237
  • [50] Ensemble Machine Learning Systems for the Estimation of Steel Quality Control
    Li, Fucun
    Wu, Jianqing
    Dong, Fang
    Lin, Jiayin
    Sun, Geng
    Chen, Huaming
    Shen, Jun
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2245 - 2252