Long-Term Trends in Subsurface Flows of Solar Cycle 23 to 25

被引:0
|
作者
Komm, Rudolf [1 ]
机构
[1] Natl Solar Observ, Boulder, CO 80303 USA
基金
美国国家科学基金会;
关键词
Helioseismology; Observations; Solar cycle; Velocity fields; Interior; OSCILLATIONS; GONG; HMI;
D O I
10.1007/s11207-024-02397-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the long-term variation of the zonal and meridional flows from Solar Cycle 23 to 25 derived with ring-diagram analysis applied to Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams. We focus mainly on the subsurface flows averaged over depths from 2.0 Mm to 11.6 Mm since their long-term variations are sufficiently similar. First, we examine their temporal variations for systematic artifacts. We find that the GONG-derived zonal flows increase almost linearly with time until about 2020, which we correct with a linear regression. Then we determine the average differences between the GONG- and HMI-derived flows. The average offset is 0.15 +/- 0.53\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.15 \pm 0.53$\end{document} m s-1 for the zonal flow and 0.65 +/- 0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.65 \pm 0.08$\end{document} m s-1 for the meridional flow within +/- 30.0 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 30.0<^>{\circ }$\end{document} latitude. The average difference of the meridional flow is nearly constant with latitude in this range, whereas that of the zonal flow varies similarly to that of the magnetic activity. At latitudes of 45.0 degrees and higher, the differences increase and are larger than those at lower latitudes, which is most likely due to the combined effect of different spatial resolution between GONG and HMI and geometric projection effects. Finally, we combine the GONG- and HMI-derived flows and find, as expected, that the solar-cycle variation is the dominant long-term variation. At each latitude within +/- 30.0 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 30.0<^>{\circ }$\end{document}, the meridional-flow pattern appears ahead of the zonal-flow pattern by an average lag of 0.926 +/- 0.126\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.926 \pm 0.126$\end{document} years. The equatorward and poleward branches of the solar-cycle variation occur at 52.5 degrees with the poleward branches present near 60.0 degrees and the equatorward ones at lower latitudes. The zonal flows at 52.5 degrees and 60.0 degrees show an additional trend and decrease by 2.9 +/- 0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.9 \pm 0. 3$\end{document} m s-1 over 11 years. This decrease might nevertheless be related to the solar cycle and imply that the flow amplitudes are anticorrelated with the strength of the associated solar cycle.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23
    Basu, Sarbani
    Antia, H. M.
    ASTROPHYSICAL JOURNAL, 2010, 717 (01): : 488 - 495
  • [22] Long-term trends in, and spatial variation of, solar irradiances in Ireland
    Stanhill, G
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 1998, 18 (09) : 1015 - 1030
  • [23] Divergence and Vorticity of Subsurface Flows During Solar Cycles 23 and 24
    Komm, R.
    Howe, R.
    Hill, F.
    SOLAR PHYSICS, 2021, 296 (04)
  • [24] Divergence and Vorticity of Subsurface Flows During Solar Cycles 23 and 24
    R. Komm
    R. Howe
    F. Hill
    Solar Physics, 2021, 296
  • [25] Long-term solar cycle evolution: Review of recent developments
    Usoskin, IG
    Mursula, K
    SOLAR PHYSICS, 2003, 218 (1-2) : 319 - 343
  • [26] Long-term and solar cycle changes in the atmospheric sodium layer
    Clemesha, BR
    Batista, PP
    Simonich, DM
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 1997, 59 (13) : 1673 - 1678
  • [27] New standpoints in long-term solar cycle evolution: A review
    Usoskin, IG
    Mursula, K
    SOLAR VARIABILITY AS AN INPUT TO THE EARTH'S ENVIRONMENT, 2003, 535 : 25 - 36
  • [28] Long-Term Solar Cycle Evolution: Review of Recent Developments
    I.G. Usoskin
    K. Mursula
    Solar Physics, 2003, 218 : 319 - 343
  • [29] Long-term solar variability and the solar cycle in the 21st century
    Bonev, BP
    Penev, KM
    Sello, S
    ASTROPHYSICAL JOURNAL, 2004, 605 (01): : L81 - L84
  • [30] Long-Term Modulation of Cosmic Rays in Solar Cycles 23–24
    Yanke V.G.
    Belov A.V.
    Gushchina R.T.
    Bulletin of the Russian Academy of Sciences: Physics, 2021, 85 (09) : 1045 - 1048