Early Detection of Skin Diseases Across Diverse Skin Tones Using Hybrid Machine Learning and Deep Learning Models

被引:0
|
作者
Aquil, Akasha [1 ]
Saeed, Faisal [1 ]
Baowidan, Souad [2 ]
Ali, Abdullah Marish [3 ]
Elmitwally, Nouh Sabri [1 ,4 ]
机构
[1] Birmingham City Univ, Coll Comp, Birmingham B4 7XG, England
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
[4] Cairo Univ, Fac Comp & Artificial Intelligence, Dept Comp Sci, Giza 12613, Egypt
关键词
machine learning; skin diseases; diverse skin tones; dermoscopic images; random forest; SVM; decision tree; DERMOSCOPY; CLASSIFICATION; DERMATOSCOPY; KERATOSIS; CANCER;
D O I
10.3390/info16020152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Skin diseases in melanin-rich skin often present diagnostic challenges due to the unique characteristics of darker skin tones, which can lead to misdiagnosis or delayed treatment. This disparity impacts millions within diverse communities, highlighting the need for accurate, AI-based diagnostic tools. In this paper, we investigated the performance of three machine learning methods -Support Vector Machines (SVMs), Random Forest (RF), and Decision Trees (DTs)-combined with state-of-the-art (SOTA) deep learning models, EfficientNet, MobileNetV2, and DenseNet121, for predicting skin conditions using dermoscopic images from the HAM10000 dataset. The features were extracted using the deep learning models, with the labels encoded numerically. To address the data imbalance, SMOTE and resampling techniques were applied. Additionally, Principal Component Analysis (PCA) was used for feature reduction, and fine-tuning was performed to optimize the models. The results demonstrated that RF with DenseNet121 achieved a superior accuracy of 98.32%, followed by SVM with MobileNetV2 at 98.08%, and Decision Tree with MobileNetV2 at 85.39%. The proposed methods overcome the SVM with the SOTA EfficientNet model, validating the robustness of the proposed approaches. Evaluation metrics such as accuracy, precision, recall, and F1-score were used to benchmark performance, showcasing the potential of these methods in advancing skin disease diagnostics for diverse populations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A Comparative Study of Ensemble Deep Learning Models for Skin Cancer Detection
    Kolachina, Srinivasa Kranthi Kiran
    Agada, Ruth
    Li, Wenting
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 175 - 181
  • [42] A hybrid framework for glaucoma detection through federated machine learning and deep learning models
    Aljohani, Abeer
    Aburasain, Rua Y.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [43] Skin Cancer Detection Using Deep Learning-A Review
    Naqvi, Maryam
    Gilani, Syed Qasim
    Syed, Tehreem
    Marques, Oge
    Kim, Hee-Cheol
    DIAGNOSTICS, 2023, 13 (11)
  • [44] An Efficient Approach for Skin Disease Detection using Deep Learning
    Alam, Jihan
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [45] Skin Cancer Detection: A Review Using Deep Learning Techniques
    Dildar, Mehwish
    Akram, Shumaila
    Irfan, Muhammad
    Khan, Hikmat Ullah
    Ramzan, Muhammad
    Mahmood, Abdur Rehman
    Alsaiari, Soliman Ayed
    Saeed, Abdul Hakeem M.
    Alraddadi, Mohammed Olaythah
    Mahnashi, Mater Hussen
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (10)
  • [46] Multi Class Skin Diseases Classification Based On Dermoscopic Skin Images Using Deep Learning
    Patel, Manojkumar B.
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (02): : 151 - 161
  • [47] Melanlysis: A mobile deep learning approach for early detection of skin cancer
    Arani, Samen Anjum
    Zhang, Yu
    Rahman, Md Tanvir
    Yang, Hui
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 89 - 97
  • [48] Deep Learning Based Automated Diagnosis of Skin Diseases Using Dermoscopy
    Anand, Vatsala
    Gupta, Sheifali
    Koundal, Deepika
    Mahajan, Shubham
    Pandit, Amit Kant
    Zaguia, Atef
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3145 - 3160
  • [49] Deep Learning-Based Skin Diseases Classification using Smartphones
    Oztel, Ismail
    Oztel, Gozde Yolcu
    Sahin, Veysel Harun
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (12)
  • [50] A comprehensive review of deep learning and machine learning techniques for early-stage skin cancer detection: Challenges and research gaps
    Alzamili, Ali. H.
    Ruhaiyem, Nur Intan Raihana
    JOURNAL OF INTELLIGENT SYSTEMS, 2025, 34 (01)