Early Detection of Skin Diseases Across Diverse Skin Tones Using Hybrid Machine Learning and Deep Learning Models

被引:0
|
作者
Aquil, Akasha [1 ]
Saeed, Faisal [1 ]
Baowidan, Souad [2 ]
Ali, Abdullah Marish [3 ]
Elmitwally, Nouh Sabri [1 ,4 ]
机构
[1] Birmingham City Univ, Coll Comp, Birmingham B4 7XG, England
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
[4] Cairo Univ, Fac Comp & Artificial Intelligence, Dept Comp Sci, Giza 12613, Egypt
关键词
machine learning; skin diseases; diverse skin tones; dermoscopic images; random forest; SVM; decision tree; DERMOSCOPY; CLASSIFICATION; DERMATOSCOPY; KERATOSIS; CANCER;
D O I
10.3390/info16020152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Skin diseases in melanin-rich skin often present diagnostic challenges due to the unique characteristics of darker skin tones, which can lead to misdiagnosis or delayed treatment. This disparity impacts millions within diverse communities, highlighting the need for accurate, AI-based diagnostic tools. In this paper, we investigated the performance of three machine learning methods -Support Vector Machines (SVMs), Random Forest (RF), and Decision Trees (DTs)-combined with state-of-the-art (SOTA) deep learning models, EfficientNet, MobileNetV2, and DenseNet121, for predicting skin conditions using dermoscopic images from the HAM10000 dataset. The features were extracted using the deep learning models, with the labels encoded numerically. To address the data imbalance, SMOTE and resampling techniques were applied. Additionally, Principal Component Analysis (PCA) was used for feature reduction, and fine-tuning was performed to optimize the models. The results demonstrated that RF with DenseNet121 achieved a superior accuracy of 98.32%, followed by SVM with MobileNetV2 at 98.08%, and Decision Tree with MobileNetV2 at 85.39%. The proposed methods overcome the SVM with the SOTA EfficientNet model, validating the robustness of the proposed approaches. Evaluation metrics such as accuracy, precision, recall, and F1-score were used to benchmark performance, showcasing the potential of these methods in advancing skin disease diagnostics for diverse populations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases
    Abunadi, Ibrahim
    Senan, Ebrahim Mohammed
    ELECTRONICS, 2021, 10 (24)
  • [2] Skin Cancer Detection in Diverse Skin Tones by Machine Learning Combining Audio and Visual Convolutional Neural Networks
    Walker, Bruce N.
    Blalock, Travis Wayne
    Leibowitz, Rebecca
    Oron, Yoram
    Dascalu, Daphne
    David, Eli Omid
    Dascalu, Avi
    ONCOLOGY, 2024,
  • [3] Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach
    Daghrir, Jinen
    Tlig, Lotfi
    Bouchouicha, Moez
    Sayadi, Mounir
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [4] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Tembhurne, Jitendra V.
    Hebbar, Nachiketa
    Patil, Hemprasad Y.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27501 - 27524
  • [5] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Jitendra V. Tembhurne
    Nachiketa Hebbar
    Hemprasad Y. Patil
    Tausif Diwan
    Multimedia Tools and Applications, 2023, 82 : 27501 - 27524
  • [6] Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
    Rajpoot, Vikram
    Tiwari, Akhilesh
    Jalal, Anand Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 36091 - 36117
  • [7] Deep learning-aided decision support for diagnosis of skin disease across skin tones
    Groh, Matthew
    Badri, Omar
    Daneshjou, Roxana
    Koochek, Arash
    Harris, Caleb
    Soenksen, Luis R.
    Doraiswamy, P. Murali
    Picard, Rosalind
    NATURE MEDICINE, 2024, 30 (02) : 573 - 583
  • [8] Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
    Vikram Rajpoot
    Akhilesh Tiwari
    Anand Singh Jalal
    Multimedia Tools and Applications, 2023, 82 : 36091 - 36117
  • [9] Deep learning-aided decision support for diagnosis of skin disease across skin tones
    Matthew Groh
    Omar Badri
    Roxana Daneshjou
    Arash Koochek
    Caleb Harris
    Luis R. Soenksen
    P. Murali Doraiswamy
    Rosalind Picard
    Nature Medicine, 2024, 30 : 573 - 583
  • [10] Monkeypox Skin Lesion Detection Using Deep Learning Models
    Gurbuz, Selen
    Aydin, Galip
    2022 INTERNATIONAL CONFERENCE ON COMPUTERS AND ARTIFICIAL INTELLIGENCE TECHNOLOGIES, CAIT, 2022, : 66 - 70