Composite fermions and parton wavefunctions in twisted graphene on hexagonal boron nitride

被引:0
|
作者
Salvador-Sanchez, J. [1 ]
Perez-Rodriguez, A. [1 ]
Clerico, V. [1 ]
Zheliuk, O. [2 ]
Zeitler, U. [2 ]
Watanabe, K. [3 ]
Taniguchi, T. [4 ]
Diez, E. [1 ]
Amado, M. [1 ]
Bellani, V. [5 ]
机构
[1] Univ Salamanca, Dept Fundamental Phys, Nanotechnol Grp, Salamanca 37008, Spain
[2] Radboud Univ Nijmegen, High Field Magnet Lab HFML EMFL, NL-6525 ED Nijmegen, Netherlands
[3] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
[5] Univ Pavia, Dept Phys, I-27100 Pavia, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 11期
基金
欧盟地平线“2020”;
关键词
QUANTUM HALL STATES;
D O I
10.1140/epjp/s13360-024-05771-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a twisted graphene on hexagonal boron nitride, the presence of a gap and the breaking of the symmetry between carbon sublattices lead to multicomponent fractional quantum Hall effect (FQHE) due to the electrons' correlation. Here we report on the FQHE at filling factors nu = k/2 and nu = k/3 with nu > 1, and on the composite fermions at in the nu < 1 lowest Landau level nu = 4/5, 5/7 and 2/3. These fractional states can be described with a partons model, in which the electron is broken down into sub-particles each one residing in an integer quantum Hall effect state; partons are fictitious particles that, glued back together, recover the physical electrons. The parton states host exotic anyons that could potentially form building blocks of a fault-tolerant topological quantum computer.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride
    Chen Ling-Xiu
    Wang Hui-Shan
    Jiang Cheng-Xin
    Chen Chen
    Wang Hao-Min
    ACTA PHYSICA SINICA, 2019, 68 (16)
  • [42] Thermal conductance of graphene/hexagonal boron nitride heterostructures
    Lu, Simon
    McGaughey, Alan J. H.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
  • [43] Electronic structure of graphene nanoribbons on hexagonal boron nitride
    Gani, Yohanes S.
    Abergel, D. S. L.
    Rossi, Enrico
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [44] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [45] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [46] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [47] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6
  • [48] Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices
    Garcia, Andrei G. F.
    Neumann, Michael
    Amet, Francois
    Williams, James R.
    Watanabe, Kenji
    Taniguchi, Takashi
    Goldhaber-Gordon, David
    NANO LETTERS, 2012, 12 (09) : 4449 - 4454
  • [49] Origin of band gaps in graphene on hexagonal boron nitride
    Jung, Jeil
    DaSilva, Ashley M.
    MacDonald, Allan H.
    Adam, Shaffique
    NATURE COMMUNICATIONS, 2015, 6
  • [50] Electronic structure of superlattices of graphene and hexagonal boron nitride
    Kaloni, T. P.
    Cheng, Y. C.
    Schwingenschloegl, U.
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) : 919 - 922