Non-invariant infinitely connected cycle of Baker domains

被引:0
|
作者
Kotus, Janina [1 ]
Balderas, Marco Montes de Oca [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Nacl Autonomade Mexico, Fac Ciencias, Ave Univ 3000,Circuito Exterior S-N,Ciudad Univ, Mexico City 04510, Mexico
关键词
Transcendental meromorphic functions; Julia set; Periodic Baker cycle; MEROMORPHIC FUNCTIONS; SINGULARITIES; ITERATION; EXAMPLES;
D O I
10.1007/s13324-025-01021-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the first example of a non-invariant cycle of Baker domains of infinite connectivity for non-entire meromorphic functions. We also prove the necessary and sufficient condition for a cycle of Baker domains to be infinitely connected in terms of critical points for the family f(z)=lambda ez+mu z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=\lambda e<^>z+\frac{\mu }{z}$$\end{document}, where lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are defined in the paper.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Simply connected Baker domains of some meromorphic functions
    Kotus, Janina
    de Oca Balderas, Marco Montes
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 108 - 126
  • [42] INVARIANT SUBSPACES OF HARDY CLASSES ON INFINITELY CONNECTED OPEN SURFACES
    NEVILLE, CW
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 2 (1-16) : R5 - R151
  • [43] Baryon non-invariant couplings in Higgs effective field theory
    Merlo, Luca
    Saa, Sara
    Sacristan-Barbero, Mario
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (03):
  • [44] On groups with the minimal condition for non-invariant decomposable abelian subgroups
    Lyman, F. N.
    Drushlyak, M. G.
    ALGEBRA & DISCRETE MATHEMATICS, 2006, (04): : 57 - 66
  • [45] Incorporating Rotation Invariance with Non-invariant Networks for Point Clouds
    Fei, Jiajun
    Deng, Zhidong
    Proceedings - 2024 International Conference on 3D Vision, 3DV 2024, 2024, : 985 - 994
  • [47] Incorporating Rotation Invariance with Non-invariant Networks for Point Clouds
    Fei, Jiajun
    Deng, Zhidong
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 985 - 994
  • [48] Non-invariant submanifolds of locally decomposable golden Riemannian manifolds
    Mustafa Gök
    Erol Kılıç
    Arabian Journal of Mathematics, 2021, 10 : 77 - 89
  • [50] CHIRAL NON-INVARIANT SOLUTIONS OF THE GAP EQUATION FOR A CONFINING POTENTIAL
    LEYAOUANC, A
    OLIVER, L
    PENE, O
    RAYNAL, JC
    PHYSICS LETTERS B, 1984, 134 (3-4) : 249 - 252