Non-invariant infinitely connected cycle of Baker domains

被引:0
|
作者
Kotus, Janina [1 ]
Balderas, Marco Montes de Oca [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Nacl Autonomade Mexico, Fac Ciencias, Ave Univ 3000,Circuito Exterior S-N,Ciudad Univ, Mexico City 04510, Mexico
关键词
Transcendental meromorphic functions; Julia set; Periodic Baker cycle; MEROMORPHIC FUNCTIONS; SINGULARITIES; ITERATION; EXAMPLES;
D O I
10.1007/s13324-025-01021-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the first example of a non-invariant cycle of Baker domains of infinite connectivity for non-entire meromorphic functions. We also prove the necessary and sufficient condition for a cycle of Baker domains to be infinitely connected in terms of critical points for the family f(z)=lambda ez+mu z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=\lambda e<^>z+\frac{\mu }{z}$$\end{document}, where lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are defined in the paper.
引用
收藏
页数:16
相关论文
共 50 条