A brief survey of deep learning methods for android Malware detection

被引:0
|
作者
Joomye, Abdurraheem [1 ]
Ling, Mee Hong [1 ]
Yau, Kok-Lim Alvin [2 ]
机构
[1] Sunway Univ, Dept Smart Comp & Cyber Resilience, Jalan Univ, Bandar Sunway 47500, Selangor, Malaysia
[2] Univ Tunku Abdul Rahman UTAR, Lee Kong Chian Fac Engn & Sci, Jalan Sungai Long, Kajang 43200, Selangor, Malaysia
关键词
Machine learning; Deep learning; Malware; Android; Security; Feature extraction; Static analysis; Dynamic analysis; DETECTION SYSTEM; NEURAL-NETWORKS; FRAMEWORK;
D O I
10.1007/s13198-024-02643-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As the number of malware attacks continues to grow year by year with increasing complexity, Android devices have remained vulnerable with over 30 million mobile attacks detected in 2023. Thus, it has become more challenging to detect recent malware using traditional methods, such as signature-based and heuristic-based methods. Meanwhile, there has been a rise in the application and research of machine learning (ML) and deep learning (DL). As a result, researchers have proposed ML- and DL-based methods for Android malware detection. This paper reviews the methods proposed in the literature for Android malware detection using DL. It establishes a taxonomy highlighting and explores the feature types extracted through static and dynamic analyses and the DL models used in the literature. It also illustrates which feature types have been used with the different DL models. Finally, it discusses major challenges and potential future directions in the field of ML and DL methods for Android malware detection such as the need for updated datasets, more on-device evaluation of the methods and more approaches using dynamic/hybrid analyses.
引用
收藏
页码:711 / 733
页数:23
相关论文
共 50 条
  • [31] Android Malware Detection Methods Based on Convolutional Neural Network: A Survey
    Shu, Longhui
    Dong, Shi
    Su, Huadong
    Huang, Junjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (05): : 1330 - 1350
  • [32] A Survey of Android Malware Static Detection Technology Based on Machine Learning
    Wu, Qing
    Zhu, Xueling
    Liu, Bo
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [33] Malware Detection in Android Systems with Traditional Machine Learning Models: A Survey
    Bayazit, Esra Calik
    Sahingoz, Ozgur Koray
    Dogan, Buket
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 374 - 381
  • [34] A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
    Alqahtani, Ebtesam J.
    Zagrouba, Rachid
    Almuhaideb, Abdullah
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 110 - 117
  • [35] A lightweight deep learning-based android malware detection framework
    Ma, Runze
    Yin, Shangnan
    Feng, Xia
    Zhu, Huijuan
    Sheng, Victor S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [36] Android malware detection system using deep learning and code item
    Coleman S.-P.W.
    Hwang Y.-S.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (02): : 116 - 121
  • [37] Fine-grained Android Malware Detection based on Deep Learning
    Li, Dongfang
    Wang, Zhaoguo
    Xue, Yibo
    2018 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2018,
  • [38] An Enhanced Deep Learning Neural Network for the Detection and Identification of Android Malware
    Musikawan, Pakarat
    Kongsorot, Yanika
    You, Ilsun
    So-In, Chakchai
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8560 - 8577
  • [39] A Survey on Android Malware Detection Techniques Using Supervised Machine Learning
    Altaha, Safa J.
    Aljughaiman, Ahmed
    Gul, Sonia
    IEEE ACCESS, 2024, 12 : 173168 - 173191
  • [40] Metaheuristics with Deep Learning Model for Cybersecurity and Android Malware Detection and Classification
    Albakri, Ashwag
    Alhayan, Fatimah
    Alturki, Nazik
    Ahamed, Saahirabanu
    Shamsudheen, Shermin
    APPLIED SCIENCES-BASEL, 2023, 13 (04):