共 50 条
The lattice of ideals of certain ringsThe lattice of ideals of certain ringsD. Savin
被引:0
|作者:
Diana Savin
[1
]
机构:
[1] Transilvania University of Braşov,Faculty of Mathematics and Computer Science
关键词:
Distributive lattices;
Ideals;
Noetherian rings;
Bezout rings;
Dedekind rings;
Ring of algebraic integers;
Boolean rings;
11R04;
11R11;
03G05;
03B80;
11T30;
03G10;
D O I:
10.1007/s40590-024-00680-x
中图分类号:
学科分类号:
摘要:
Let A be a unitary ring and let (I(A),⊆)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathbf {I(A)},\subseteq )$$\end{document} be the lattice of ideals of the ring A. In this article, we will study the property of the lattice (I(A),⊆)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathbf {I(A)},\subseteq )$$\end{document} to be Noetherian or not, for various types of rings A. In the last section of the article, we study certain rings that are not Boolean rings, not fields, but all their ideals are idempotent.
引用
收藏
相关论文