Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian

被引:0
|
作者
Wang, Fangyuan [1 ]
Wang, Qiming [2 ]
Zhou, Zhaojie [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250000, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Zhuhai 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element; Optimal control; Sparse control; Fractional Laplacian; A posteriori error estimate; ELLIPTIC CONTROL-PROBLEMS; ERROR ANALYSIS; CONVERGENCE; REGULARITY; EQUATIONS; COST;
D O I
10.1007/s10915-024-02739-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present and analyze a weighted residual a posteriori error estimate for a sparse optimal control problem. The problem involves a non-differentiable cost functional, a state equation with an integral fractional Laplacian, and control constraints. We employ subdifferentiation in non-differentiable convex analysis to obtain first-order optimality conditions. Piecewise linear polynomials are utilized to approximate the solutions of the state and adjoint equations. The control variable is discretized by the variational discretization method. Upper bounds for the a posteriori error estimate of the finite element approximation of the optimal control problem are derived. One challenge in devising a posteriori error estimators is poor properties of the residual. Namely, it is not necessarily in L2(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\varOmega )$$\end{document}. To address this issue, the weighted residual estimator incorporates additional weight computed as the power of the distance from the mesh skeleton. Furthermore, we propose an h-adaptive algorithm driven by the a posteriori error estimator, utilizing the D & ouml;rfler labeling criterion. The convergence analysis results show that the approximation sequence generated by the adaptive algorithm converges at the optimal algebraic rate. Finally, numerical experiments are conducted to validate the theoretical results.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Adaptive multi-meshes in finite element approximation of optimal control
    Liu, WB
    RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 113 - 132
  • [22] Adaptive finite element approximation for distributed elliptic optimal control problems
    Li, R
    Liu, WB
    Ma, HP
    Tang, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) : 1321 - 1349
  • [23] FINITE ELEMENT APPROXIMATIONS OF AN OPTIMAL CONTROL PROBLEM WITH INTEGRAL STATE CONSTRAINT
    Liu, Wenbin
    Yang, Danping
    Yuan, Lei
    Ma, Chaoqun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 1163 - 1185
  • [24] Spectral Galerkin Approximation of Fractional Optimal Control Problems with Fractional Laplacian
    Zhang, Jiaqi
    Yang, Yin
    Zhou, Zhaojie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (06) : 1631 - 1654
  • [25] Numerical approximation of the integral fractional Laplacian
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    NUMERISCHE MATHEMATIK, 2019, 142 (02) : 235 - 278
  • [26] Numerical approximation of the integral fractional Laplacian
    Andrea Bonito
    Wenyu Lei
    Joseph E. Pasciak
    Numerische Mathematik, 2019, 142 : 235 - 278
  • [27] FINITE ELEMENT APPROXIMATION OF AN OPTIMAL DESIGN PROBLEM
    Chakib, A.
    Nachaoui, A.
    Nachaoui, M.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2012, 11 (01) : 19 - 26
  • [28] FINITE ELEMENT APPROXIMATION OF THE PARABOLIC FRACTIONAL OBSTACLE PROBLEM
    Otarola, Enrique
    Salgado, Abner J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2619 - 2639
  • [29] ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION
    Song, Xiaoliang
    Chen, Bo
    Yu, Bo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 471 - 492
  • [30] A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN
    D'elia, Marta
    Glusa, Christian
    Otarola, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2775 - 2798