Genome-scale evolution in local populations of wild chimpanzees

被引:0
|
作者
Hayakawa, Takashi [1 ]
Kishida, Takushi [2 ,3 ]
Go, Yasuhiro [4 ,5 ,6 ]
Inoue, Eiji [7 ]
Kawaguchi, Eri [8 ]
Aizu, Tomoyuki [9 ,13 ]
Ishizaki, Hinako [9 ,13 ]
Toyoda, Atsushi [9 ,13 ]
Fujiyama, Asao [13 ]
Matsuzawa, Tetsuro [10 ,11 ]
Hashimoto, Chie [3 ]
Furuichi, Takeshi [3 ]
Agata, Kiyokazu [12 ]
机构
[1] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido, Japan
[2] Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa, Japan
[3] Kyoto Univ, Wildlife Res Ctr, Kyoto, Japan
[4] Univ Hyogo, Grad Sch Informat Sci, Kobe, Hyogo, Japan
[5] Natl Inst Nat Sci, Natl Inst Physiol Sci, Dept Syst Neurosci, Div Behav Dev, Okazaki, Aichi, Japan
[6] Natl Inst Nat Sci, Exploratory Res Ctr Life & Living Syst ExCELLS, Cognit Genom Res Grp, Okazaki, Aichi, Japan
[7] Toho Univ, Fac Sci, Funabashi, Chiba, Japan
[8] Kyoto Univ, Ctr iPS Cell Res & Applicat, Kyoto, Japan
[9] Natl Inst Genet, Dept Genom & Evolutionary Biol, Mishima, Shizuoka, Japan
[10] Chubu Gakuin Univ, Dept Rehabil, Gifu, Japan
[11] Northwest Univ, Coll Life Sci, Xian, Peoples R China
[12] Natl Inst Basic Biol, Lab Regenerat Biol, Okazaki, Aichi, Japan
[13] Natl Inst Genet, Adv Genom Ctr, Mishima, Shizuoka, Japan
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
日本学术振兴会;
关键词
Chimpanzee; Local population; Heterozygosity; Pseudogene; Olfactory receptor; Bitter taste receptor; RECEPTOR GENE FAMILY; PAN-TROGLODYTES; DNA; DIVERSITY; SEQUENCE; PATERNITY; SELECTION; REVEALS; IDENTIFICATION; ALIGNMENT;
D O I
10.1038/s41598-024-84163-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of genome-scale evolution has been difficult in large, endangered animals because opportunities to collect high-quality genetic samples are limited. There is a need for novel field-friendly, cost-effective genetic techniques. This study conducted an exome-wide analysis of a total of 42 chimpanzees (Pan troglodytes) across six African regions, providing insights into population discrimination techniques. Wild chimpanzee DNA was extracted noninvasively from collected fecal samples using the lysis-buffer storage method. To target genome-scale regions of host DNA, exome-capture sequencing was performed using cost-effective baits originally designed for humans (closely related to chimpanzees). Multivariate analysis effectively discriminated differences in local populations, aiding in the identification of samples' geographical origins. Exome-wide heterozygosity was negatively correlated significantly with genome-wide nonsynonymous-synonymous substitution ratios, suggesting that mutation loads exist at the local population level. Exome sequences revealed functional diversity and protein-coding gene divergence. Segregating pseudogenes were comprehensively annotated, with many being population-specific and others shared among populations. Focusing on multicopy chemosensory receptor genes, the segregating pseudogenes OR7D4 (an olfactory receptor) and TAS2R42 (a bitter taste receptor) were shared among western and eastern chimpanzees. Overall, our analytical framework offers ecological insights into chimpanzees and may be applicable to other organisms.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Future perspectives of genome-scale sequencing
    Steyaert, Wouter
    Callens, Steven
    Coucke, Paul
    Dermaut, Bart
    Hemelsoet, Dimitri
    Terryn, Wim
    Poppe, Bruce
    ACTA CLINICA BELGICA, 2018, 73 (01) : 7 - 10
  • [32] Genome-scale resources for Thermoanaerobacterium saccharolyticum
    Currie, Devin H.
    Raman, Babu
    Gowen, Christopher M.
    Tschaplinski, Timothy J.
    Land, Miriam L.
    Brown, Steven D.
    Covalla, Sean F.
    Klingeman, Dawn M.
    Yang, Zamin K.
    Engle, Nancy L.
    Johnson, Courtney M.
    Rodriguez, Miguel
    Shaw, A. Joe
    Kenealy, William R.
    Lynd, Lee R.
    Fong, Stephen S.
    Mielenz, Jonathan R.
    Davison, Brian H.
    Hogsett, David A.
    Herring, Christopher D.
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [33] The Genome-Scale Integrated Networks in Microorganisms
    Hao, Tong
    Wu, Dan
    Zhao, Lingxuan
    Wang, Qian
    Wang, Edwin
    Sun, Jinsheng
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [34] Genome-scale Estimation of the Tree of Life
    Warnow, Tandy
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 634 - 634
  • [35] Genome-scale models in human metabologenomics
    Mardinoglu, Adil
    Palsson, Bernhard O.
    NATURE REVIEWS GENETICS, 2025, 26 (02) : 123 - 140
  • [36] Genome-scale characterization of transcription factors
    Michael Fletcher
    Nature Genetics, 2023, 55 : 357 - 357
  • [37] Genome-scale CRISPR pooled screens
    Sanjana, Neville E.
    ANALYTICAL BIOCHEMISTRY, 2017, 532 : 95 - 99
  • [38] Genome-scale neurogenetics: methodology and meaning
    McCarro, Steven A.
    Feng, Guoping
    Hyman, Steven E.
    NATURE NEUROSCIENCE, 2014, 17 (06) : 756 - 763
  • [39] A genome-scale phylogeny of the kingdom Fungi
    Li, Yuanning
    Steenwyk, Jacob L.
    Chang, Ying
    Wang, Yan
    James, Timothy Y.
    Stajich, Jason E.
    Spatafora, Joseph W.
    Groenewald, Marizeth
    Dunn, Casey W.
    Hittinger, Chris Todd
    Shen, Xing-Xing
    Rokas, Antonis
    CURRENT BIOLOGY, 2021, 31 (08) : 1653 - +
  • [40] Optimizing genome-scale network reconstructions
    Monk, Jonathan
    Nogales, Juan
    Palsson, Bernhard O.
    NATURE BIOTECHNOLOGY, 2014, 32 (05) : 447 - 452