Development and validation of a prediction model for ED using machine learning: according to NHANES 2001-2004

被引:1
|
作者
Chen, Xing-Yu [1 ,2 ]
Lu, Wen-Ting [3 ]
Zhang, Di [4 ]
Tan, Mo-Yao [5 ]
Qin, Xin [1 ,2 ]
机构
[1] Chengdu Integrated TCM, Chengdu, Sichuan, Peoples R China
[2] Western Med Hosp, Chengdu, Sichuan, Peoples R China
[3] XinDu Hosp Tradit Chinese Med, Chengdu, Sichuan, Peoples R China
[4] Sichuan Univ, West China Sch Pharm, Chengdu, Sichuan, Peoples R China
[5] Chengdu Univ Tradit Chinese Med, Chengdu, Sichuan, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Erectile Dysfunction; Machine learning; XGBoost; National Health and Nutrition Examination Survey; Prediction model; URINARY-TRACT SYMPTOMS; ERECTILE DYSFUNCTION; CARDIOVASCULAR-DISEASE; OXIDATIVE STRESS; NEURAL-NETWORKS; MEN; PREVALENCE; TESTOSTERONE; DIAGNOSIS; CLASSIFICATION;
D O I
10.1038/s41598-024-78797-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Erectile Dysfunction (ED) is a form of sexual dysfunction in males that imposes significant health and financial burdens globally. Despite its high prevalence, diagnosing ED remains challenging due to the limitations of current diagnostic methods and patients' reluctance to seek medical help. Currently, some studies have used machine learning techniques for developing ED prediction models, but the performance and interpretability of existing models need to be further improved. This study utilized data from the National Health and Nutrition Examination Survey (NHANES) for the years 2001 to 2004, adhering to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement. After excluding male respondents who did not meet the study criteria, a total of 3,869 participants were included. Gradient boosting decision tree (GBDT) algorithms (XGBoost, CatBoost, LightGBM) were used to develop the ED prediction model. Data preprocessing, feature selection, model evaluation, and interpretability analysis were performed to ensure the reliability and effectiveness of the model. The model evaluation results revealed that the AUC values are XGBoost: 0.887 +/- 0.016; LightGBM: 0.879 +/- 0.016; CatBoost: 0.871 +/- 0.019. The F1-Scores are XGBoost: 0.695 +/- 0.023; LightGBM: 0.681 +/- 0.025; CatBoost: 0.681 +/- 0.025. The Recall values are XGBoost: 0.789 +/- 0.026; LightGBM: 0.739 +/- 0.030; CatBoost: 0.711 +/- 0.030. These results confirmed that the XGBoost model is the best-performing ED prediction model in this study. Interpretability analysis results of the XGBoost model showed that age, obesity, cardiovascular risk factors, prostate-related diseases, and socioeconomic status are key features for predicting ED, playing a significant role in the ED mechanism. Therefore, we believe the ED prediction model trained in this study has strong predictive performance and high interpretability. This model can help to expand the diagnostic options for ED, improve the diagnosis rate of ED, and assist doctors in early intervention for patients with ED, ultimately improving patient prognosis.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Development and internal validation of machine learning algorithms for mortality prediction model of people with DM and CKD
    Zou, Yutong
    Liu, Fang
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2024, 39
  • [32] Development and internal validation of machine learning algorithms for mortality prediction model of people with DM and CKD
    Zou, Yutong
    Liu, Fang
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2024, 39 : I818 - I819
  • [33] Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model
    Cahn, Avivit
    Shoshan, Avi
    Sagiv, Tal
    Yesharim, Rachel
    Goshen, Ran
    Shalev, Varda
    Raz, Itamar
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2020, 36 (02)
  • [34] Machine learning-based diagnostic prediction of IgA nephropathy: model development and validation study
    Noda, Ryunosuke
    Ichikawa, Daisuke
    Shibagaki, Yugo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning
    Wang, Yuchen
    Han, Qinghe
    Wen, Baohong
    Yang, Bingbing
    Zhang, Chen
    Song, Yang
    Zhang, Luo
    Xian, Junfang
    EUROPEAN RADIOLOGY, 2025, 35 (04) : 2074 - 2083
  • [36] Development and Validation of a Machine Learning Prediction Model of Posttraumatic Stress Disorder After Military Deployment
    Papini, Santiago
    Norman, Sonya B.
    Campbell-Sills, Laura
    Sun, Xiaoying
    He, Feng
    Kessler, Ronald C.
    Ursano, Robert J.
    Jain, Sonia
    Stein, Murray B.
    JAMA NETWORK OPEN, 2023, 6 (06) : E2321273
  • [37] Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness
    Bernstorff, Martin
    Hansen, Lasse
    Enevoldsen, Kenneth
    Damgaard, Jakob
    Haestrup, Frida
    Perfalk, Erik
    Danielsen, Andreas Aalkjaer
    Ostergaard, Soren Dinesen
    ACTA PSYCHIATRICA SCANDINAVICA, 2025, 151 (03) : 245 - 258
  • [38] Development and validation of a machine-learning prediction model to improve abdominal aortic aneurysm screening
    Salzler, Gregory G.
    Ryer, Evan J.
    Abdu, Robert W.
    Lanyado, Alon
    Sagiv, Tal
    Choman, Eran N.
    Tariq, Abdul A.
    Urick, Jim
    Mitchell, Elliot G.
    Maff, Rebecca M.
    Delong, Grant
    Shriner, Stacey L.
    Elmore, James R.
    Hasharon, Hod
    JOURNAL OF VASCULAR SURGERY, 2024, 79 (04) : 776 - 783
  • [39] Development and external validation of an interpretable machine learning model for the prediction of intubation in the intensive care unit
    Liu, Jianyuan
    Duan, Xiangjie
    Duan, Minjie
    Jiang, Yu
    Mao, Wei
    Wang, Lilin
    Liu, Gang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Development and validation of a machine learning model integrated with the clinical workflow for inpatient discharge date prediction
    Mahyoub, Mohammed A.
    Dougherty, Kacie
    Yadav, Ravi R.
    Berio-Dorta, Raul
    Shukla, Ajit
    FRONTIERS IN DIGITAL HEALTH, 2024, 6