Rejuvenation of reverse osmosis polyamide membranes degraded by chlorine in the presence of ferric chloride

被引:0
|
作者
Bari, Muhammad Inam [1 ]
Kayhan, Bende Merve [1 ]
Bozkaya, Bengü [1 ]
Argönül, Aykut [1 ]
机构
[1] Sustainable Environment and Energy Systems (SEES) Graduate Program, Middle East Technical University Northern Cyprus Campus, Kalkanlı, Güzelyurt, Mersin 10, Mersin,99738, Turkey
来源
Advanced Membranes | 2025年 / 5卷
关键词
Bioremediation - Catalysts - Chemical water treatment - Chlorination - Chlorine compounds - Degradation - Disinfection - Lead removal (water treatment) - Metal cleaning - Osmosis membranes - Reverse osmosis - Wastewater disposal - Wastewater treatment;
D O I
10.1016/j.advmem.2025.100141
中图分类号
学科分类号
摘要
Reverse osmosis (RO) polyamide membranes are widely used for water treatment applications. However, certain processes such as wastewater reuse require regular membrane cleaning and disinfection with oxidants, which can lead to early membrane degradation. Furthermore, some metal ions present in the water can act as a catalyst for further accelerating the degradation. This early degradation of RO membranes poses significant challenges, resulting in operational inefficiencies, early disposal of membranes, and elevated operational costs. Fortunately, there is the possibility of recovering some part of this performance loss by means of chemical treatment through rejuvenating agents. This study aims to investigate the effectiveness of a commercially available rejuvenating agent containing tannic acid for restoring salt rejection and permeability parameters on degraded thin-film polyamide membranes. The membranes were first degraded using 250 ​ppm sodium hypochlorite (NaOCl) and 0.05 ​ppm ferric chloride (FeCl3) at various pH levels (pH ​= ​4, 7 and 9). After applying the rejuvenation treatment to the degraded membranes, the efficiency of the rejuvenating agent was determined based on the improvement achieved for performance testing with respect to salt rejection and permeability. Analytical characterization of the membranes was carried out with Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR). It was found that the chlorine degradation of membranes was accelerated in the presence of FeCl3 at all studied pH levels but more prominently in the acidic region. This acceleration effect was attributed to the formation of (·OH, ·OCl) radicals. Under the conditions studied in this work, rejuvenating agent treatment effectively enhanced the salt rejection capability of the degraded membranes but was unable to restore the permeate flux. © 2025 The Authors
引用
收藏
相关论文
共 50 条
  • [11] Chlorine resistant membranes for reverse osmosis and nanofiltration
    McGrath, James E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [12] Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes
    Liu, Meihong
    Wu, Dihua
    Yu, Sanchuan
    Gao, Congjie
    JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (01) : 205 - 214
  • [13] Development of a chlorine-resistant polyamide reverse osmosis membrane
    Shintani, Takuji
    Matsuyama, Hideto
    Kurata, Naoki
    DESALINATION, 2007, 207 (1-3) : 340 - 348
  • [14] Interfacial Polymerization of Aromatic Polyamide Reverse Osmosis Membranes
    Zheng, Size
    Gissinger, Jacob
    Hsiao, Benjamin S.
    Wei, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (47) : 65677 - 65686
  • [15] Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite
    Van Thanh Do
    Tang, Chuyang Y.
    Reinhard, Martin
    Leckie, James O.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) : 852 - 859
  • [16] Preparation and characterization of thermally crosslinked chlorine resistant thin film composite polyamide membranes for reverse osmosis
    Kim, Youn Kook
    Lee, Sun Yong
    Kim, Dae Hoon
    Lee, Byung Seong
    Nam, Sang Yong
    Rhim, Ji Won
    DESALINATION, 2010, 250 (02) : 865 - 867
  • [17] Modification of polyamide reverse osmosis membranes for the separation of urea
    Habib, Shahriar
    Weinman, Steven T.
    JOURNAL OF MEMBRANE SCIENCE, 2022, 655
  • [18] Rejection mechanisms for contaminants in polyamide reverse osmosis membranes
    Shen, Meng
    Keten, Sinan
    Lueptow, Richard M.
    JOURNAL OF MEMBRANE SCIENCE, 2016, 509 : 36 - 47
  • [19] CHLORINE-RESISTANT MEMBRANE FOR REVERSE-OSMOSIS .2. PREPARATION OF CHLORINE-RESISTANT POLYAMIDE COMPOSITE MEMBRANES
    KAWAGUCHI, T
    TAMURA, H
    JOURNAL OF APPLIED POLYMER SCIENCE, 1984, 29 (11) : 3369 - 3379
  • [20] CHLORINE-RESISTANT MEMBRANE FOR REVERSE OSMOSIS - II. PREPARATION OF CHLORINE-RESISTANT POLYAMIDE COMPOSITE MEMBRANES.
    Kawaguchi, Takeyuki
    Tamura, Hiroki
    1600, (29):