Spatial Distributions of Chemical Species in a Pin-to-plate Dry Air Corona Discharge

被引:0
|
作者
Keshavarzi, Maryam [1 ]
Salahshoor, Mostafa [2 ]
Najafi, Gholamhassan [1 ]
Khoshtaghaza, Mohammad Hadi [1 ]
Gorjian, Shiva [1 ,3 ]
Ghomi, Hamid [4 ]
Seyfi, Pourya [4 ]
机构
[1] Tarbiat Modares Univ TMU, Dept Mech Biosyst Engn, POB 14115-111, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Phys, Tehran 1684613114, Iran
[3] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[4] Shahid Beheshti Univ, Laser & Plasma Res Inst, Tehran, Iran
关键词
Corona discharge; Pin-to-plate discharge; Plasma chemistry; Dry air; Density distribution; Fluid model;
D O I
10.1007/s11090-025-10538-3
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The reactive oxygen and nitrogen species generated by plasma have demonstrated consequential effects on diverse commercial applications. Hence, studying the chemistry and spatial distribution of reactive species in plasma is imperative for understanding the influence of plasma in various applications. This study aims to systematically explore the plasma chemistry of a pin-to-plate negative direct current (DC) corona discharge in dry air, using simulations based on a two dimensional (2D) axisymmetric fluid model. The model encompasses a comprehensive set of chemical reactions involving 33 biomedically active species (ROS and RNS). This study entails a rigorous evaluation of the 2D spatial distribution of all chemical species, detailing their minimum and maximum values, at a needle voltage of -10 kV. To enhance visualization and enable comparisons, we integrate contour lines into the density distributions to indicate the average density of each species. N2A3 & sum;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{N}}_{2}\left({\text{A}}<^>{3}\sum\right)$$\end{document} among nitrogen species, O3 and O2a1 Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{O}}_{2}\left({\text{a}}<^>{1}\Delta\right)$$\end{document} among oxygen species, and N2O among NOx species exhibit the highest average density in the simulation domain. Furthermore, key reactions involved in the production and consumption of each species are thoroughly discussed. Additionally, the research examines the influence of needle voltage, ranging from -5 to -12.5 kV, on the peak and average densities of all species investigated. Lastly, to validate the simulation model, an experimental study of the pin-to-plate negative DC corona discharge is conducted, during which the voltage-current characteristics and optical emission spectrometry (OES) profiles are measured. The simulation results are in good agreement with the experimental data.
引用
收藏
页码:873 / 918
页数:46
相关论文
共 50 条
  • [21] Fundamental investigation on electrostatic ink jet phenomena in pin-to-plate discharge system
    Kawamoto, H
    Umezu, S
    Koizumi, R
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (01) : 19 - 27
  • [22] Regime Transition of Pin-to-Plate Nanosecond Pulsed Discharge under Low Pressure
    Ding, Z. W.
    Li, Y. W.
    Pang, L.
    Zhuang, Z.
    Ma, W.
    Zhang, B. L.
    PLASMA PHYSICS REPORTS, 2019, 45 (05) : 492 - 500
  • [23] A study of pin-to-plate type spark discharge generator for producing unagglomerated nanoaerosols
    Han, Kyuhee
    Kim, Woongsik
    Yu, Jiwon
    Lee, Jeonghoon
    Lee, Heechul
    Woo, Chang Gyu
    Choi, Mansoo
    JOURNAL OF AEROSOL SCIENCE, 2012, 52 : 80 - 88
  • [24] Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure
    Feng Bo-Wen
    Wang Ruo-Yu
    Ma Yu-Peng-Xue
    Zhong Xiao-Xia
    ACTA PHYSICA SINICA, 2021, 70 (09)
  • [25] Theoretical Simulation of Nanosecond High Pressure Gas Discharge in the Pin-to-Plate Gap
    Kozhevnikov, Vasily Yu
    Kozyrev, Andrey, V
    Semeniuk, Natalia S.
    Kokovin, Aleksandr O.
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 442 - 445
  • [26] Regime Transition of Pin-to-Plate Nanosecond Pulsed Discharge under Low Pressure
    Z. W. Ding
    Y. W. Li
    L. Pang
    Z. Zhuang
    W. Ma
    B. L. Zhang
    Plasma Physics Reports, 2019, 45 : 492 - 500
  • [27] Simulation and Experimental Study for Degradation of Organic Dyes Using Dual pin-to-plate Corona Discharge Plasma Reactors for Industrial Wastewater Treatment
    El-Tayeb, A.
    El-Shazly, A. H.
    Elkady, M. F.
    Abdel-Rahman, A.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (09) : 855 - 869
  • [28] Effects of EHD and external air flows on electric corona discharge in pin-plate configuration
    Zhao, L
    Adamiak, K
    CONFERENCE RECORD OF THE 2005 IEEE INDUSTRY APPLICATIONS CONFERENCE, VOLS 1-4, 2005, : 2584 - 2589
  • [29] High-speed etching of amorphous silicon using pin-to-plate dielectric barrier discharge
    Kyung, Se-Jin
    Park, Jae-Beom
    Lee, Yong-Hyuk
    Lee, June-Hee
    Yeom, Geun-Young
    SURFACE & COATINGS TECHNOLOGY, 2007, 202 (4-7): : 1204 - 1207
  • [30] Dynamics of pin electrode in pin-to-plate gas discharge system used for ozone-less charger in laser printer
    Kawamoto, H
    Takasaki, K
    Yasuda, H
    Kumagai, N
    INITIATIVES OF PRECISION ENGINEERING AT THE BEGINNING OF A MILLENNIUM, 2001, : 694 - 698